The geometric structure of skew lattices
HTML articles powered by AMS MathViewer
- by Jonathan Leech
- Trans. Amer. Math. Soc. 335 (1993), 823-842
- DOI: https://doi.org/10.1090/S0002-9947-1993-1080169-X
- PDF | Request permission
Abstract:
A skew lattice is a noncommutative associative analogue of a lattice and as such may be viewed both as an algebraic object and as a geometric object. Whereas recent papers on skew lattices primarily treated algebraic aspects of skew lattices, this article investigates their intrinsic geometry. This geometry is obtained by considering how the coset geometries of the maximal primitive subalgebras combine to form a global geometry on the skew lattice. While this geometry is derived from the algebraic operations, it can be given a description that is independent of these operations, but which in turn induces them. Various aspects of this geometry are investigated including: its general properties; algebraic and numerical consequences of these properties; connectedness; the geometry of skew lattices in rings; connections between primitive skew lattices and completely simple semigroups; and finally, this geometry is used to help classify symmetric skew lattices on two generators.References
- A. P. Birjukov, Varieties of idempotent semigroups, Algebra i Logika 9 (1970), 255–273 (Russian). MR 0297897
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- Charles F. Fennemore, All varieties of bands. I, II, Math. Nachr. 48 (1971), 237–252; ibid. 48 (1971), 253-262. MR 294535, DOI 10.1002/mana.19710480118 —, All varieties of bands. II, Math. Nachr. 48 (1971), 253-363.
- J. A. Gerhard, The lattice of equational classes of idempotent semigroups, J. Algebra 15 (1970), 195–224. MR 263953, DOI 10.1016/0021-8693(70)90073-6
- Max Dieter Gerhardts, Schräverbände und Quasiordnungen, Math. Ann. 181 (1969), 65–73 (German). MR 241328, DOI 10.1007/BF01351180
- Karl Heinrich Hofmann and Paul S. Mostert, Elements of compact semigroups, Charles E. Merrill Books, Inc., Columbus, Ohio, 1966. MR 0209387
- J. M. Howie, An introduction to semigroup theory, L. M. S. Monographs, No. 7, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0466355 P. Jordan, The mathematical theory of quasi-order, Semigroups of Idempotents and Noncommutative Lattices—A New Field of Algebra, 1961 Report, European Office of Aerospace Research.
- Jonathan Leech, Skew lattices in rings, Algebra Universalis 26 (1989), no. 1, 48–72. MR 981425, DOI 10.1007/BF01243872
- Jonathan Leech, Skew Boolean algebras, Algebra Universalis 27 (1990), no. 4, 497–506. MR 1387897, DOI 10.1007/BF01188995
- Jonathan Leech, Normal skew lattices, Semigroup Forum 44 (1992), no. 1, 1–8. MR 1138681, DOI 10.1007/BF02574320
- E. S. Ljapin, Semigroups, Translations of Mathematical Monographs, Vol. 3, American Mathematical Society, Providence, R.I., 1963. MR 0167545
- K. S. S. Nambooripad, Structure of regular semigroups. I, Mem. Amer. Math. Soc. 22 (1979), no. 224, vii+119. MR 546362, DOI 10.1090/memo/0224
- Mario Petrich, A construction and a classification of bands, Math. Nachr. 48 (1971), 263–274. MR 294542, DOI 10.1002/mana.19710480119 —, Introduction to semigroups, Bell and Howell, 1973. —, Lectures on semigroups, Wiley, 1977. B. M. Schein, Pseudosemilattices and pseudolattices, Amer. Math. Soc. Transl. (2) 119 (1983), 1-16.
- R. J. Warne, On the structure of idempotent semigroups, Proc. Amer. Math. Soc. 37 (1973), 17–21. MR 306380, DOI 10.1090/S0002-9939-1973-0306380-3
- Miyuki Yamada and Naoki Kimura, Note on idempotent semigroups. II, Proc. Japan Acad. 34 (1958), 110–112. MR 98141
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 823-842
- MSC: Primary 20M10; Secondary 06A06, 20M25
- DOI: https://doi.org/10.1090/S0002-9947-1993-1080169-X
- MathSciNet review: 1080169