Rosenlicht fields
HTML articles powered by AMS MathViewer
- by John Shackell
- Trans. Amer. Math. Soc. 335 (1993), 579-595
- DOI: https://doi.org/10.1090/S0002-9947-1993-1085945-5
- PDF | Request permission
Abstract:
Let $\phi$ satisfy an algebraic differential equation over ${\mathbf {R}}$. We show that if $\phi$ also belongs to a Hardy field, it possesses an asymptotic form which must be one of a restricted number of types. The types depend only on the order of the differential equation. For a particular equation the types are still more restricted. In some cases one can conclude that no solution of the given equation lies in a Hardy field, and in others that a particular asymptotic form is the only possibility for such solutions. This therefore gives a new method for obtaining asymptotic solutions of nonlinear differential equations. The techniques used are in part derived from the work of Rosenlicht in Hardy fields.References
- Michael Boshernitzan, An extension of Hardy’s class $L$ of “orders of infinity”, J. Analyse Math. 39 (1981), 235–255. MR 632463, DOI 10.1007/BF02803337
- Michael Boshernitzan, Hardy fields and existence of transexponential functions, Aequationes Math. 30 (1986), no. 2-3, 258–280. MR 843667, DOI 10.1007/BF02189932 N. Bourbaki, Fonctions d’une variable réele, Ch. V, 2nd ed. Hermann, Paris, 1961.
- Paul Du Bois-Reymond, Ueber asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen, Math. Ann. 8 (1875), no. 3, 363–414 (German). MR 1509850, DOI 10.1007/BF01443187 G. H. Hardy, Orders of infinity, Cambridge Univ. Press, Cambridge, 1910.
- Maxwell Rosenlicht, Growth properties of functions in Hardy fields, Trans. Amer. Math. Soc. 299 (1987), no. 1, 261–272. MR 869411, DOI 10.1090/S0002-9947-1987-0869411-2
- Maxwell Rosenlicht, Hardy fields, J. Math. Anal. Appl. 93 (1983), no. 2, 297–311. MR 700146, DOI 10.1016/0022-247X(83)90175-0
- Maxwell Rosenlicht, Rank change on adjoining real powers to Hardy fields, Trans. Amer. Math. Soc. 284 (1984), no. 2, 829–836. MR 743747, DOI 10.1090/S0002-9947-1984-0743747-5
- Maxwell Rosenlicht, The rank of a Hardy field, Trans. Amer. Math. Soc. 280 (1983), no. 2, 659–671. MR 716843, DOI 10.1090/S0002-9947-1983-0716843-5
- John Shackell, Growth estimates for exp-log functions, J. Symbolic Comput. 10 (1990), no. 6, 611–632. MR 1087982, DOI 10.1016/S0747-7171(08)80161-7 —, Rosenlicht fields and asymptotic forms, Technical Report, University of Kent at Canterbury, 1990.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 579-595
- MSC: Primary 12H05; Secondary 26A12, 26E99, 34E99
- DOI: https://doi.org/10.1090/S0002-9947-1993-1085945-5
- MathSciNet review: 1085945