The Weil-Petersson symplectic structure at Thurston’s boundary
HTML articles powered by AMS MathViewer
- by A. Papadopoulos and R. C. Penner
- Trans. Amer. Math. Soc. 335 (1993), 891-904
- DOI: https://doi.org/10.1090/S0002-9947-1993-1089420-3
- PDF | Request permission
Abstract:
The Weil-Petersson Kähler structure on the Teichmüller space $\mathcal {T}$ of a punctured surface is shown to extend, in an appropriate sense, to Thurston’s symplectic structure on the space $\mathcal {M}{\mathcal {F}_0}$ of measured foliations of compact support on the surface. We introduce a space ${\widetilde {\mathcal {M}\mathcal {F}}_0}$ of decorated measured foliations whose relationship to $\mathcal {M}{\mathcal {F}_0}$ is analogous to the relationship between the decorated Teichmüller space $\tilde {\mathcal {T}}$ and $\mathcal {T}$. $\widetilde {\mathcal {M}{\mathcal {F}_0}}$ is parametrized by a vector space, and there is a natural piecewise-linear embedding of $\mathcal {M}{\mathcal {F}_0}$ in $\widetilde {\mathcal {M}{\mathcal {F}_0}}$ which pulls back a global differential form to Thurston’s symplectic form. We exhibit a homeomorphism between $\tilde {\mathcal {T}}$ and ${\widetilde {\mathcal {M}\mathcal {F}}_0}$ which preserves the natural two-forms on these spaces. Following Thurston, we finally consider the space $\mathcal {Y}$ of all suitable classes of metrics of constant Gaussian curvature on the surface, form a natural completion $\overline {\mathcal {Y}}$ of $\mathcal {Y}$, and identify $\overline {\mathcal {Y}} - \mathcal {Y}$ with $\mathcal {M}{\mathcal {F}_0}$. An extension of the Weil-Petersson Kähler form to $\mathcal {Y}$ is found to extend continuously by Thurston’s symplectic pairing on $\mathcal {M}{\mathcal {F}_0}$ to a two-form on $\overline {\mathcal {Y}}$ itself.References
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044 M. Bestvina (in preparation).
- Francis Bonahon, Earthquakes on Riemann surfaces and on measured geodesic laminations, Trans. Amer. Math. Soc. 330 (1992), no. 1, 69–95. MR 1049611, DOI 10.1090/S0002-9947-1992-1049611-3
- Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR 568308
- William M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), no. 2, 263–302. MR 846929, DOI 10.1007/BF01389091
- Shigeyuki Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), no. 3, 551–577. MR 914849, DOI 10.1007/BF01389178
- Athanase Papadopoulos, Deux remarques sur la géométrie symplectique de l’espace des feuilletages mesurés sur une surface, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 127–141 (French, with English summary). MR 850748
- Athanase Papadopoulos, Sur la forme bilinéaire associée à un réseau ferroviaire, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 18, 833–836 (French, with English summary). MR 822843
- Athanase Papadopoulos, Sur le bord de Thurston de l’espace de Teichmüller d’une surface non compacte, Math. Ann. 282 (1988), no. 3, 353–359 (French). MR 967017, DOI 10.1007/BF01460038 —, Trois études sur les feuilletages mesurés, Thèse d’Etat, Orsay, 1989.
- R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299–339. MR 919235
- R. C. Penner, Weil-Petersson volumes, J. Differential Geom. 35 (1992), no. 3, 559–608. MR 1163449
- R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR 1144770, DOI 10.1515/9781400882458
- Hideo Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2) 77 (1963), 33–71. MR 145106, DOI 10.2307/1970201
- Scott Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983), no. 2, 207–234. MR 690844, DOI 10.2307/2007075 W. P. Thurston, Some stretch maps between hyperbolic surfaces, Topology (to appear).
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 891-904
- MSC: Primary 57M50; Secondary 30F60, 32G15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1089420-3
- MathSciNet review: 1089420