Piecewise $\textrm {SL}_ 2\textbf {Z}$ geometry
HTML articles powered by AMS MathViewer
- by Peter Greenberg
- Trans. Amer. Math. Soc. 335 (1993), 705-720
- DOI: https://doi.org/10.1090/S0002-9947-1993-1140914-1
- PDF | Request permission
Abstract:
Piecewise ${\text {SL}}_2{\mathbf {Z}}$ geometry studies properties of the plane invariant under ${\text {pl}}$-homeomorphisms which, locally, have the form $x \mapsto Ax + b$ , with $A \in {\text {SL}}_2{\mathbf {Z}}$, $b \in {{\mathbf {Q}}^2}$ , and whose singular lines are rational. In this paper, invariants of polygons are obtained, relations with Pick’s theorem are described, and a conjecture is posed.References
- Robert L. Devaney, A piecewise linear model for the zones of instability of an area-preserving map, Phys. D 10 (1984), no. 3, 387–393. MR 763480, DOI 10.1016/0167-2789(84)90187-8 L. C. Glaser, Geometrical combinatorial topology, Vol. I, Van Nostrand Reinhold, New York, 1970.
- Martin Charles Golumbic, Interval graphs and related topics, Discrete Math. 55 (1985), no. 2, 113–121. MR 798527, DOI 10.1016/0012-365X(85)90039-1
- A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), no. 3, 221–237. MR 579573, DOI 10.1016/0040-9383(80)90009-9
- N. V. Ivanov, Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 49–91, 255 (Russian). MR 896878
- Hans Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman. MR 0364103
- Peter Greenberg and Vlad Sergiescu, An acyclic extension of the braid group, Comment. Math. Helv. 66 (1991), no. 1, 109–138. MR 1090167, DOI 10.1007/BF02566638 P. Greenberg, A combinatorial method for pseudogroups, preprint.
- R. W. Gaskell, M. S. Klamkin, and P. Watson, Triangulations and Pick’s theorem, Math. Mag. 49 (1976), no. 1, 35–37. MR 400046, DOI 10.2307/2689882
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 705-720
- MSC: Primary 52B20
- DOI: https://doi.org/10.1090/S0002-9947-1993-1140914-1
- MathSciNet review: 1140914