The limit sets of some infinitely generated Schottky groups
HTML articles powered by AMS MathViewer
- by Richard Schwartz
- Trans. Amer. Math. Soc. 335 (1993), 865-875
- DOI: https://doi.org/10.1090/S0002-9947-1993-1148045-1
- PDF | Request permission
Abstract:
Let $P$ be a packing of balls in Euclidean space ${E^n}$ having the property that the radius of every ball of $P$ lies in the interval $[1/k,k]$. If $G$ is a Schottky group associated to $P$, then the Hausdorff dimension of the topological limit set of $G$ is less than a uniform constant $C(k,n) < n$. In particular, this limit set has zero volume.References
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Peter G. Doyle, On the bass note of a Schottky group, Acta Math. 160 (1988), no. 3-4, 249–284. MR 945013, DOI 10.1007/BF02392277
- Gerald B. Folland, Real analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. Modern techniques and their applications; A Wiley-Interscience Publication. MR 767633 Zheng-Xu He, An estimate for the hexagonal circle packing, Ph.D. Thesis, 1988.
- R. S. Phillips and P. Sarnak, The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Acta Math. 155 (1985), no. 3-4, 173–241. MR 806414, DOI 10.1007/BF02392542
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 865-875
- MSC: Primary 57S30; Secondary 22E40
- DOI: https://doi.org/10.1090/S0002-9947-1993-1148045-1
- MathSciNet review: 1148045