Rational approximations to the dilogarithm
HTML articles powered by AMS MathViewer
- by Masayoshi Hata
- Trans. Amer. Math. Soc. 336 (1993), 363-387
- DOI: https://doi.org/10.1090/S0002-9947-1993-1147401-5
- PDF | Request permission
Abstract:
The irrationality proof of the values of the dilogarithmic function ${L_2}(z)$ at rational points $z = 1/k$ for every integer $k \in ( - \infty , - 5] \cup [7,\infty )$ is given. To show this we develop the method of Padé-type approximations using Legendre-type polynomials, which also derives good irrationality measures of ${L_2}(1/k)$. Moreover, the linear independence over ${\mathbf {Q}}$ of the numbers $1$, $\log (1 - 1/k)$, and ${L_2}(1/k)$ is also obtained for each integer $k \in ( - \infty , - 5] \cup [7,\infty )$ .References
- F. Beukers, A note on the irrationality of $\zeta (2)$ and $\zeta (3)$, Bull. London Math. Soc. 11 (1979), no. 3, 268–272. MR 554391, DOI 10.1112/blms/11.3.268
- G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I, J. Math. Pures Appl. (9) 58 (1979), no. 4, 445–476. MR 566655
- G. V. Chudnovsky, Measures of irrationality, transcendence and algebraic independence. Recent progress, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 11–82. MR 697257
- D. V. Chudnovsky and G. V. Chudnovsky, Padé and rational approximations to systems of functions and their arithmetic applications, Number theory (New York, 1982) Lecture Notes in Math., vol. 1052, Springer, Berlin, 1984, pp. 37–84. MR 750662, DOI 10.1007/BFb0071540
- R. Dvornicich and C. Viola, Some remarks on Beukers’ integrals, Number theory, Vol. II (Budapest, 1987) Colloq. Math. Soc. János Bolyai, vol. 51, North-Holland, Amsterdam, 1990, pp. 637–657. MR 1058238 A. Erdélyi et al., Higher transcendental functions, vol. 1, McGraw-Hill, New York, 1953.
- Masayoshi Hata, Legendre type polynomials and irrationality measures, J. Reine Angew. Math. 407 (1990), 99–125. MR 1048530, DOI 10.1515/crll.1990.407.99
- Masayoshi Hata, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. (9) 69 (1990), no. 2, 133–173. MR 1067449
- Leonard Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR 618278 W. Maier, Potenzreihen irrationalen Grenzwertes, J. Reine Angew. Math. 156 (1927), 93-148.
- Alfred van der Poorten, A proof that Euler missed$\ldots$Apéry’s proof of the irrationality of $\zeta (3)$, Math. Intelligencer 1 (1978/79), no. 4, 195–203. An informal report. MR 547748, DOI 10.1007/BF03028234
- E. A. Rukhadze, A lower bound for the approximation of $\textrm {ln}\,2$ by rational numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1987), 25–29, 97 (Russian). MR 922879
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 336 (1993), 363-387
- MSC: Primary 11J82; Secondary 11J72
- DOI: https://doi.org/10.1090/S0002-9947-1993-1147401-5
- MathSciNet review: 1147401