On injectivity in locally presentable categories
HTML articles powered by AMS MathViewer
- by Jiří Adámek and Jiří Rosický
- Trans. Amer. Math. Soc. 336 (1993), 785-804
- DOI: https://doi.org/10.1090/S0002-9947-1993-1085935-2
- PDF | Request permission
Abstract:
Classes of objects injective w.r.t. specified morphisms are known to be closed under products and retracts. We prove the converse: a class of objects in a locally presentable category is an injectivity class iff it is closed under products and retracts. This result requires a certain large-cardinal principle. We characterize classes of objects injective w.r.t. a small collection of morphisms: they are precisely the accessible subcategories closed under products and $\kappa$-filtered colimits. Assuming the (large-cardinal) Vopênka’s principle, the accessibility can be left out. As a corollary, we solve a problem of ${\text {L}}$. Fuchs concerning injectivity classes of abelian groups. Finally, we introduce a weak concept of reflectivity, called cone reflectivity, and we prove that under Vopênka’s principle all subcategories of locally presentable categories are cone reflective. Several open questions are formulated, e.g., does each topological space have a largest (non-${T_2}$) compactification?References
- Jiří Adámek and Václav Koubek, Least fixed point of a functor, J. Comput. System Sci. 19 (1979), no. 2, 163–178. MR 550196, DOI 10.1016/0022-0000(79)90026-6
- J. Adámek and J. Rosický, Intersections of reflective subcategories, Proc. Amer. Math. Soc. 103 (1988), no. 3, 710–712. MR 947643, DOI 10.1090/S0002-9939-1988-0947643-9
- Jiří Adámek and Jiří Rosický, Reflections in locally presentable categories, Arch. Math. (Brno) 25 (1989), no. 1-2, 89–94. MR 1189203 —, On orthogonal subcategories of locally presentable categories (to appear).
- J. Adámek, J. Rosický, and V. Trnková, Are all limit-closed subcategories of locally presentable categories reflective?, Categorical algebra and its applications (Louvain-La-Neuve, 1987) Lecture Notes in Math., vol. 1348, Springer, Berlin, 1988, pp. 1–18. MR 975956, DOI 10.1007/BFb0081345
- S. Baron, Reflectors as compositions of epi-reflectors, Trans. Amer. Math. Soc. 136 (1969), 499–508. MR 236237, DOI 10.1090/S0002-9947-1969-0236237-1
- B. Banaschewski and G. Bruns, Categorical characterization of the MacNeille completion, Arch. Math. (Basel) 18 (1967), 369–377. MR 221984, DOI 10.1007/BF01898828
- W. W. Comfort, Small spaces which “generate” large spaces, Proc. Amer. Math. Soc. 104 (1988), no. 3, 973–980. MR 964881, DOI 10.1090/S0002-9939-1988-0964881-X
- Yves Diers, Catégories localement multiprésentables, Arch. Math. (Basel) 34 (1980), no. 4, 344–356 (French). MR 593951, DOI 10.1007/BF01224971 F. Drake, Set theory, North-Holland, Amsterdam, 1974.
- Manfred Dugas and Gerhard Herden, Arbitrary torsion classes of abelian groups, Comm. Algebra 11 (1983), no. 13, 1455–1472. MR 700574, DOI 10.1080/00927878308822914
- Objets algébriquement clos et injectifs dans les catégories localement présentables, Bull. Soc. Math. France Mém., No. 42, Société Mathématique de France, Paris, 1975 (French). Supplément au Bull. Soc. Math. France, Tome 103, no. 2. MR 0401879 E. R. Fisher, Vopênka’s principle, universal algebra and category theory, preprint, 1987.
- P. J. Freyd and G. M. Kelly, Categories of continuous functors. I, J. Pure Appl. Algebra 2 (1972), 169–191. MR 322004, DOI 10.1016/0022-4049(72)90001-1
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- R. Guitart and C. Lair, Calcul syntaxique des modèles et calcul des formules internes, Diagrammes 4 (1980), GL1–GL106 (French). MR 684746
- Peter Gabriel and Friedrich Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Mathematics, Vol. 221, Springer-Verlag, Berlin-New York, 1971 (German). MR 0327863, DOI 10.1007/BFb0059396
- Horst Herrlich, Topological structures and injectivity, Rend. Circ. Mat. Palermo (2) Suppl. 12 (1986), 87–92. Second topology conference (Taormina, 1984). MR 853149
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Peter T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- G. M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980), no. 1, 1–83. MR 589937, DOI 10.1017/S0004972700006353
- Václav Koubek and Jan Reiterman, Categorical constructions of free algebras, colimits, and completions of partial algebras, J. Pure Appl. Algebra 14 (1979), no. 2, 195–231. MR 524187, DOI 10.1016/0022-4049(79)90007-0
- C. Lair, Catégories modelables et catégories esquissables, Diagrammes 6 (1981), L1–L20 (French). MR 684535
- J.-M. Maranda, Injective structures, Trans. Amer. Math. Soc. 110 (1964), 98–135. MR 163937, DOI 10.1090/S0002-9947-1964-0163937-X
- Michael Makkai, A theorem on Barr-exact categories, with an infinitary generalization, Ann. Pure Appl. Logic 47 (1990), no. 3, 225–268. MR 1058298, DOI 10.1016/0168-0072(90)90036-2
- Michael Makkai and Robert Paré, Accessible categories: the foundations of categorical model theory, Contemporary Mathematics, vol. 104, American Mathematical Society, Providence, RI, 1989. MR 1031717, DOI 10.1090/conm/104
- Hajnal Andréka and István Németi, A general axiomatizability theorem formulated in terms of cone-injective subcategories, Universal algebra (Esztergom, 1977) Colloq. Math. Soc. János Bolyai, vol. 29, North-Holland, Amsterdam-New York, 1982, pp. 13–35. MR 660845
- J. Rosický, V. Trnková, and J. Adámek, Unexpected properties of locally presentable categories, Algebra Universalis 27 (1990), no. 2, 153–170. MR 1037859, DOI 10.1007/BF01182450
- Joachim Schröder, The category of Urysohn spaces is not cowellpowered, Topology Appl. 16 (1983), no. 3, 237–241. MR 722116, DOI 10.1016/0166-8641(83)90020-2
- Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), no. 1, 73–116. MR 482431, DOI 10.1016/0003-4843(78)90031-1
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 336 (1993), 785-804
- MSC: Primary 18A99; Secondary 18A35, 18B30, 20K40
- DOI: https://doi.org/10.1090/S0002-9947-1993-1085935-2
- MathSciNet review: 1085935