Weighted norm inequalities for homogeneous singular integrals
HTML articles powered by AMS MathViewer
- by Javier Duoandikoetxea
- Trans. Amer. Math. Soc. 336 (1993), 869-880
- DOI: https://doi.org/10.1090/S0002-9947-1993-1089418-5
- PDF | Request permission
Abstract:
We prove weighted norm inequalities for homogeneous singular integrals when only a size condition is assumed on the restriction of the kernel to the unit sphere. The same results hold for the operator obtained by modifying the centered Hardy-Littlewood maximal operator over balls with a degree zero homogeneous function and also for the maximal singular integral.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- Osvaldo N. Capri and Carlos Segovia, Behaviour of $L^r$-Dini singular integrals in weighted $L^1$ spaces, Studia Math. 92 (1989), no. 1, 21–36. MR 984847, DOI 10.4064/sm-92-1-21-36 A. Carbery, E. Hernández, and F. Soria, Estimates for the Kakeya maximal operator on radial functions in ${\mathbb {R}^n}$, Harmonic Analysis, ICM-90 Satellite Conference Proceedings, S. Igari (ed.), Springer-Verlag, Tokyo, 1991, pp. 41-50.
- Michael Christ, Weak type $(1,1)$ bounds for rough operators, Ann. of Math. (2) 128 (1988), no. 1, 19–42. MR 951506, DOI 10.2307/1971461
- Michael Christ and José Luis Rubio de Francia, Weak type $(1,1)$ bounds for rough operators. II, Invent. Math. 93 (1988), no. 1, 225–237. MR 943929, DOI 10.1007/BF01393693
- Javier Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 185–206 (English, with French summary). MR 867920
- Javier Duoandikoetxea and José L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561. MR 837527, DOI 10.1007/BF01388746
- Javier Duoandikoetxea and José L. Rubio de Francia, Estimations indépendantes de la dimension pour les transformées de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 7, 193–196 (French, with English summary). MR 780616
- R. Fefferman, A note on singular integrals, Proc. Amer. Math. Soc. 74 (1979), no. 2, 266–270. MR 524298, DOI 10.1090/S0002-9939-1979-0524298-3
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Steve Hofmann, Weak $(1,1)$ boundedness of singular integrals with nonsmooth kernel, Proc. Amer. Math. Soc. 103 (1988), no. 1, 260–264. MR 938680, DOI 10.1090/S0002-9939-1988-0938680-9
- Steve Hofmann, Weighted weak-type $(1,1)$ inequalities for rough operators, Proc. Amer. Math. Soc. 107 (1989), no. 2, 423–435. MR 984795, DOI 10.1090/S0002-9939-1989-0984795-X
- Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235–254. MR 561835, DOI 10.1090/S0002-9947-1980-0561835-X
- Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362. MR 542885, DOI 10.1090/S0002-9947-1979-0542885-8
- Douglas S. Kurtz and Richard L. Wheeden, A note on singular integrals with weights, Proc. Amer. Math. Soc. 81 (1981), no. 3, 391–397. MR 597648, DOI 10.1090/S0002-9939-1981-0597648-9
- Benjamin Muckenhoupt and Richard L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249–258. MR 285938, DOI 10.1090/S0002-9947-1971-0285938-7
- José L. Rubio de Francia, Factorization theory and $A_{p}$ weights, Amer. J. Math. 106 (1984), no. 3, 533–547. MR 745140, DOI 10.2307/2374284
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- David K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), no. 2, 389–399. MR 1047758, DOI 10.1215/S0012-7094-90-06015-6
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 336 (1993), 869-880
- MSC: Primary 42B20; Secondary 42B25, 47G10
- DOI: https://doi.org/10.1090/S0002-9947-1993-1089418-5
- MathSciNet review: 1089418