On a conjecture of Lin-Ni for a semilinear Neumann problem
Authors:
Adimurthi and S. L. Yadava
Journal:
Trans. Amer. Math. Soc. 336 (1993), 631-637
MSC:
Primary 35J65; Secondary 35P30
DOI:
https://doi.org/10.1090/S0002-9947-1993-1156299-0
MathSciNet review:
1156299
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $\Omega$ be a bounded domain in ${\mathbb {R}^n}$ $(n \geq 3)$ and $\lambda > 0$. We consider \[ \begin {array}{*{20}{c}} { - \Delta u + \lambda u = {u^{(n + 2)/(n - 2)}}} & {{\text {in}}} \; {\Omega ,} \\ {u > 0} & {{\text {in}}} \; {\Omega ,} \\ {\frac {{\partial u}} {{\partial \nu }} = 0} & {{\text {on}}} \; {\partial \Omega ,} \\ \end {array} \] and show that for $\lambda$ sufficiently small, the minimal energy solutions are only constants.
- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 3, 393–413. MR 1079983
- Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, Nonlinear analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991, pp. 9–25. MR 1205370
- Adimurthi and S. L. Yadava, Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents, Arch. Rational Mech. Anal. 115 (1991), no. 3, 275–296. MR 1106295, DOI https://doi.org/10.1007/BF00380771
- Adimurthi and S. L. Yadava, Critical exponent problem in ${\bf R}^2$ with Neumann boundary condition, Comm. Partial Differential Equations 15 (1990), no. 4, 461–501. MR 1046704, DOI https://doi.org/10.1080/03605309908820694 ---, Semilinear elliptic mixed boundary value problem with critical exponent in ${\mathbb {R}^2}$, preprint, 1989.
- Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477. MR 709644, DOI https://doi.org/10.1002/cpa.3160360405
- C. Budd, M. C. Knaap, and L. A. Peletier, Asymptotic behavior of solutions of elliptic equations with critical exponents and Neumann boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), no. 3-4, 225–250. MR 1103293, DOI https://doi.org/10.1017/S0308210500024707
- Pascal Cherrier, Meilleures constantes dans des inégalités relatives aux espaces de Sobolev, Bull. Sci. Math. (2) 108 (1984), no. 3, 225–262 (French, with English summary). MR 771911
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. MR 0473443
- M. Grossi and Filomena Pacella, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), no. 1-2, 23–43. MR 1076352, DOI https://doi.org/10.1017/S030821050003136X E. F. Keller and L. A. Segal, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), 399-415.
- Chang Shou Lin and Wei-Ming Ni, On the diffusion coefficient of a semilinear Neumann problem, Calculus of variations and partial differential equations (Trento, 1986) Lecture Notes in Math., vol. 1340, Springer, Berlin, 1988, pp. 160–174. MR 974610, DOI https://doi.org/10.1007/BFb0082894
- C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27. MR 929196, DOI https://doi.org/10.1016/0022-0396%2888%2990147-7
- Wei Ming Ni, On the positive radial solutions of some semilinear elliptic equations on ${\bf R}^{n}$, Appl. Math. Optim. 9 (1983), no. 4, 373–380. MR 694593, DOI https://doi.org/10.1007/BF01460131
- Wei-Ming Ni and Izumi Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc. 297 (1986), no. 1, 351–368. MR 849484, DOI https://doi.org/10.1090/S0002-9947-1986-0849484-2
- Renate Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc. 292 (1985), no. 2, 531–556. MR 808736, DOI https://doi.org/10.1090/S0002-9947-1985-0808736-1
- Xu Jia Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), no. 2, 283–310. MR 1125221, DOI https://doi.org/10.1016/0022-0396%2891%2990014-Z
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J65, 35P30
Retrieve articles in all journals with MSC: 35J65, 35P30
Additional Information
Article copyright:
© Copyright 1993
American Mathematical Society