Characterization of completions of unique factorization domains
HTML articles powered by AMS MathViewer
- by Raymond C. Heitmann
- Trans. Amer. Math. Soc. 337 (1993), 379-387
- DOI: https://doi.org/10.1090/S0002-9947-1993-1102888-9
- PDF | Request permission
Abstract:
It is shown that a complete local ring is the completion of a unique factorization domain if and only if it is a field, a discrete valuation ring, or it has depth at least two and no element of its prime ring is a zerodivisor. It is also shown that the Normal Chain Conjecture is false and that there exist local noncatenary UFDs.References
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549
- Ada Maria de Souza Doering, The depth conjecture: a counterexample, J. Algebra 77 (1982), no. 2, 443–448. MR 673127, DOI 10.1016/0021-8693(82)90265-4
- Christer Lech, A method for constructing bad Noetherian local rings, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 241–247. MR 846452, DOI 10.1007/BFb0075463
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- L. J. Ratliff Jr., On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals. I, Amer. J. Math. 91 (1969), 508–528. MR 246867, DOI 10.2307/2373524
- Louis J. Ratliff Jr., Chain conjectures in ring theory, Lecture Notes in Mathematics, vol. 647, Springer, Berlin, 1978. An exposition of conjectures on catenary chains. MR 496884
- L. J. Ratliff Jr., A brief history and survey of the catenary chain conjectures, Amer. Math. Monthly 88 (1981), no. 3, 169–178. MR 619563, DOI 10.2307/2320461
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 379-387
- MSC: Primary 13B35; Secondary 13C15, 13F15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1102888-9
- MathSciNet review: 1102888