Taylor series with limit-points on a finite number of circles
HTML articles powered by AMS MathViewer
- by Emmanuel S. Katsoprinakis
- Trans. Amer. Math. Soc. 337 (1993), 437-450
- DOI: https://doi.org/10.1090/S0002-9947-1993-1106192-4
- PDF | Request permission
Abstract:
Let $S(z):\sum \nolimits _{n = 0}^\infty {{a_n}{z_n}}$ be a power series with complex coefficients. For each $z$ in the unit circle $T = \{ z \in \mathbb {C}:|z| = 1\}$ we denote by $L(z)$ the set of limit-points of the sequence $\{ {s_n}(z)\}$ of the partial sums of $S(z)$. In this paper we examine Taylor series for which the set $L(z)$, for $z$ in an infinite subset of $T$, is the union of a finite number, uniformly bounded in $z$, of concentric circles. We show that, if in addition $\lim \inf |{a_n}|\; > 0$, a complete characterization of these series in terms of their coefficients is possible (see Theorem 1).References
- Jean-Pierre Kahane, Sur la structure circulaire des ensembles de points limites des sommes partielles d’une série de Taylor, Acta Sci. Math. (Szeged) 45 (1983), no. 1-4, 247–251 (French). MR 708790
- E. S. Katsoprinakis, On a theorem of Marcinkiewicz and Zygmund for Taylor series, Ark. Mat. 27 (1989), no. 1, 105–126. MR 1004725, DOI 10.1007/BF02386363
- E. S. Katsoprinakis and V. N. Nestoridis, Partial sums of Taylor series on a circle, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 3, 715–736 (English, with French summary). MR 1030846
- J. Marcinkiewicz and A. Zygmund, On the behavior of trigonometric series and power series, Trans. Amer. Math. Soc. 50 (1941), 407–453. MR 5130, DOI 10.1090/S0002-9947-1941-0005130-1
- V. Nestoridis, Limit points of partial sums of Taylor series, Mathematika 38 (1991), no. 2, 239–249 (1992). MR 1147824, DOI 10.1112/S0025579300006598 A. Zygmund, Trigonometric series, 2nd ed. reprinted, vols. I, II, Cambridge Univ. Press, 1979.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 437-450
- MSC: Primary 30B10; Secondary 42A99
- DOI: https://doi.org/10.1090/S0002-9947-1993-1106192-4
- MathSciNet review: 1106192