On the resolution of certain graded algebras

Authors:
M. P. Cavaliere, M. E. Rossi and G. Valla

Journal:
Trans. Amer. Math. Soc. **337** (1993), 389-409

MSC:
Primary 13D02; Secondary 14M99

DOI:
https://doi.org/10.1090/S0002-9947-1993-1110573-2

MathSciNet review:
1110573

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a graded algebra over the polynomial ring . Some properties of the numerical invariants in a minimal free resolution of are discussed in the case is a "Short Graded Algebra". When is the homogeneous coordinate ring of a set of points in generic position in the projective space, several result are obtained on the line traced by some conjectures proposed by Green and Lazarsfeld in [GL] and Lorenzini in [L1]

**[BG]**Edoardo Ballico and Anthony V. Geramita,*The minimal free resolution of the ideal of 𝑠 general points in 𝑃³*, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 1–10. MR**846012****[CRV1]**Maria Pia Cavaliere, Maria Evelina Rossi, and Giuseppe Valla,*On short graded algebras*, Commutative algebra (Salvador, 1988) Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, pp. 21–31. MR**1068321**, https://doi.org/10.1007/BFb0085534**[CRV2]**M. P. Cavaliere, M. E. Rossi, and G. Valla,*On the resolution of points in generic position*, Comm. Algebra**19**(1991), no. 4, 1083–1097. MR**1102328**, https://doi.org/10.1080/00927879108824191**[CRV3]**-,*On Green-Lazarsfeld and minimal resolution conjecture for**points in*, J. Pure Appl. Algebra (to appear).**[ERV]**Juan Elías, Lorenzo Robbiano, and Giuseppe Valla,*Number of generators of ideals*, Nagoya Math. J.**123**(1991), 39–76. MR**1126182**, https://doi.org/10.1017/S0027763000003640**[EK]**David Eisenbud and Jee-Heub Koh,*Remarks on points in a projective space*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 157–172. MR**1015517**, https://doi.org/10.1007/978-1-4612-3660-3_8**[EK1]**-,*Some linear syzygies conjectures*, Adv. Math. (to appear).**[G]**Mark L. Green,*Koszul cohomology and the geometry of projective varieties*, J. Differential Geom.**19**(1984), no. 1, 125–171. MR**739785****[GL]**M. Green and R. Lazarsfeld,*Some results on the syzygies of finite sets and algebraic curves*, Compositio Math.**67**(1988), no. 3, 301–314. MR**959214****[GN]**A. Giovini and G. Niesi,*CoCoA*:*A user-friendly system for commutative algebra, design and implementation of symbolic computation systems*, 429, Lecture Notes in Comput. Sci., Springer-Verlag, 1990, pp. 20-30.**[GO]**A. V. Geramita and F. Orecchia,*On the Cohen-Macaulay type of 𝑠 lines in 𝐴ⁿ⁺¹*, J. Algebra**70**(1981), no. 1, 116–140. MR**618382**, https://doi.org/10.1016/0021-8693(81)90247-7**[HSV]**L. T. Hoa, J. Stükrad and W. Vogel,*Toward a structure theory for projective varieties of degree = codimension*, Preprint 1989.**[H]**Joe Harris,*Curves in projective space*, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR**685427****[L1]**A. Lorenzini,*On the Betti numbers of points in the projective space*, Thesis, Queen's University, Kingston, Ontario, 1987.**[L2]**Anna Lorenzini,*Betti numbers of perfect homogeneous ideals*, J. Pure Appl. Algebra**60**(1989), no. 3, 273–288. MR**1021852**, https://doi.org/10.1016/0022-4049(89)90088-1**[L3]**Anna Lorenzini,*The minimal resolution conjecture*, J. Algebra**156**(1993), no. 1, 5–35. MR**1213782**, https://doi.org/10.1006/jabr.1993.1060**[MNV]**P. Maroscia, U. Nagel and W. Vogel,*On degree bound for the syzygies of a finite set of points in*, Preprint 1990.**[TV]**Ngô Vi\cfudot{e}t Trung and Giuseppe Valla,*The Cohen-Macaulay type of points in generic position*, J. Algebra**125**(1989), no. 1, 110–119. MR**1012665**, https://doi.org/10.1016/0021-8693(89)90295-0

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
13D02,
14M99

Retrieve articles in all journals with MSC: 13D02, 14M99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1110573-2

Keywords:
Resolutions of graded algebras,
Koszul complex,
points in generic position,
minimal resolution conjecture,
Green and Lazarsfeld conjecture

Article copyright:
© Copyright 1993
American Mathematical Society