On the resolution of certain graded algebras
HTML articles powered by AMS MathViewer
- by M. P. Cavaliere, M. E. Rossi and G. Valla
- Trans. Amer. Math. Soc. 337 (1993), 389-409
- DOI: https://doi.org/10.1090/S0002-9947-1993-1110573-2
- PDF | Request permission
Abstract:
Let $A = R/I$ be a graded algebra over the polynomial ring $R = k[{X_0}, \ldots ,{X_n}]$. Some properties of the numerical invariants in a minimal free resolution of $A$ are discussed in the case $A$ is a "Short Graded Algebra". When $A$ is the homogeneous coordinate ring of a set of points in generic position in the projective space, several result are obtained on the line traced by some conjectures proposed by Green and Lazarsfeld in [GL] and Lorenzini in [L1]References
- Edoardo Ballico and Anthony V. Geramita, The minimal free resolution of the ideal of $s$ general points in $\textbf {P}^3$, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 1–10. MR 846012
- Maria Pia Cavaliere, Maria Evelina Rossi, and Giuseppe Valla, On short graded algebras, Commutative algebra (Salvador, 1988) Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, pp. 21–31. MR 1068321, DOI 10.1007/BFb0085534
- M. P. Cavaliere, M. E. Rossi, and G. Valla, On the resolution of points in generic position, Comm. Algebra 19 (1991), no. 4, 1083–1097. MR 1102328, DOI 10.1080/00927879108824191 —, On Green-Lazarsfeld and minimal resolution conjecture for $n + 3$ points in ${{\mathbf {P}}^n}$, J. Pure Appl. Algebra (to appear).
- Juan Elías, Lorenzo Robbiano, and Giuseppe Valla, Number of generators of ideals, Nagoya Math. J. 123 (1991), 39–76. MR 1126182, DOI 10.1017/S0027763000003640
- David Eisenbud and Jee-Heub Koh, Remarks on points in a projective space, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 157–172. MR 1015517, DOI 10.1007/978-1-4612-3660-3_{8} —, Some linear syzygies conjectures, Adv. Math. (to appear).
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves, Compositio Math. 67 (1988), no. 3, 301–314. MR 959214 A. Giovini and G. Niesi, CoCoA: A user-friendly system for commutative algebra, design and implementation of symbolic computation systems, 429, Lecture Notes in Comput. Sci., Springer-Verlag, 1990, pp. 20-30.
- A. V. Geramita and F. Orecchia, On the Cohen-Macaulay type of $s$ lines in $A^{n+1}$, J. Algebra 70 (1981), no. 1, 116–140. MR 618382, DOI 10.1016/0021-8693(81)90247-7 L. T. Hoa, J. Stükrad and W. Vogel, Toward a structure theory for projective varieties of degree = codimension $+ 2$, Preprint 1989.
- Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427 A. Lorenzini, On the Betti numbers of points in the projective space, Thesis, Queen’s University, Kingston, Ontario, 1987.
- Anna Lorenzini, Betti numbers of perfect homogeneous ideals, J. Pure Appl. Algebra 60 (1989), no. 3, 273–288. MR 1021852, DOI 10.1016/0022-4049(89)90088-1
- Anna Lorenzini, The minimal resolution conjecture, J. Algebra 156 (1993), no. 1, 5–35. MR 1213782, DOI 10.1006/jabr.1993.1060 P. Maroscia, U. Nagel and W. Vogel, On degree bound for the syzygies of a finite set of points in ${{\mathbf {P}}^n}$, Preprint 1990.
- Ngô Việt Trung and Giuseppe Valla, The Cohen-Macaulay type of points in generic position, J. Algebra 125 (1989), no. 1, 110–119. MR 1012665, DOI 10.1016/0021-8693(89)90295-0
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 389-409
- MSC: Primary 13D02; Secondary 14M99
- DOI: https://doi.org/10.1090/S0002-9947-1993-1110573-2
- MathSciNet review: 1110573