Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems
HTML articles powered by AMS MathViewer
- by Anthony To Ming Lau and Ali Ülger
- Trans. Amer. Math. Soc. 337 (1993), 321-359
- DOI: https://doi.org/10.1090/S0002-9947-1993-1147402-7
- PDF | Request permission
Abstract:
Let $G$ be a locally compact topological group and $A(G)\;[B(G)]$ be, respectively, the Fourier and Fourier-Stieltjes algebras of $G$. It is one of the purposes of this paper to investigate the ${\text {RNP}}$ (= Radon-Nikodym property) and some other geometric properties such as weak $RNP$, the Dunford-Pettis property and the Schur property on the algebras $A(G)$ and $B(G)$, and to relate these properties to the properties of the multiplication operator on the group ${C^\ast }$-algebra ${C^\ast }(G)$. We also investigate the problem of Arens regularity of the projective tensor products ${C^\ast }(G)\hat \otimes A$, when $B(G) = {C^\ast }{(G)^\ast }$ has the ${\text {RNP}}$ and $A$ is any ${C^\ast }$-algebra. Some related problems on the measure algebra, the group algebra and the algebras ${A_p}(G)$, $P{F_p}(G)$, $P{M_p}(G)\;(1 < p < \infty )$ are also discussed.References
- Charles A. Akemann and Steve Wright, Compact actions on $C^{\ast }$-algebras, Glasgow Math. J. 21 (1980), no. 2, 143–149. MR 582123, DOI 10.1017/S0017089500004298
- Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848. MR 45941, DOI 10.1090/S0002-9939-1951-0045941-1
- Larry Baggett, A separable group having a discrete dual space is compact, J. Functional Analysis 10 (1972), 131–148. MR 0346090, DOI 10.1016/0022-1236(72)90045-6
- Larry Baggett and Keith Taylor, Groups with completely reducible regular representation, Proc. Amer. Math. Soc. 72 (1978), no. 3, 593–600. MR 509261, DOI 10.1090/S0002-9939-1978-0509261-X
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029
- Richard D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics, vol. 993, Springer-Verlag, Berlin, 1983. MR 704815, DOI 10.1007/BFb0069321
- Herbert Busemann, The geometry of geodesics, Academic Press, Inc., New York, N.Y., 1955. MR 0075623
- Ching Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc. 206 (1975), 175–200. MR 394062, DOI 10.1090/S0002-9947-1975-0394062-8
- Ching Chou, Minimally weakly almost periodic groups, J. Functional Analysis 36 (1980), no. 1, 1–17. MR 568972, DOI 10.1016/0022-1236(80)90103-2
- Cho-Ho Chu, A note on scattered $C^{\ast }$-algebras and the Radon-Nikodým property, J. London Math. Soc. (2) 24 (1981), no. 3, 533–536. MR 635884, DOI 10.1112/jlms/s2-24.3.533
- Cho-Ho Chu, von Neumann algebras which are second dual spaces, Proc. Amer. Math. Soc. 112 (1991), no. 4, 999–1000. MR 1068117, DOI 10.1090/S0002-9939-1991-1068117-3
- C.-H. Chu, B. Iochum, and S. Watanabe, $C^*$-algebras with the Dunford-Pettis property, Function spaces (Edwardsville, IL, 1990) Lecture Notes in Pure and Appl. Math., vol. 136, Dekker, New York, 1992, pp. 67–70. MR 1152338
- Cho-Ho Chu and Bruno Iochum, The Dunford-Pettis property in $C^*$-algebras, Studia Math. 97 (1990), no. 1, 59–64. MR 1074769, DOI 10.4064/sm-97-1-59-64
- Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847–870. MR 143056
- Michael Cowling, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), no. 1, 83–96. MR 531153, DOI 10.1007/BF01406711
- Mahlon Marsh Day, Correction to my paper “Fixed-point theorems for compact convex sets”, Illinois J. Math. 8 (1964), 713. MR 169210
- F. Delbaen, The Dunford-Pettis property for certain uniform algebras, Pacific J. Math. 65 (1976), no. 1, 29–33. MR 425617
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 131784, DOI 10.1007/BF02559535
- Joe Diestel, A survey of results related to the Dunford-Pettis property, Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979) Contemp. Math., vol. 2, Amer. Math. Soc., Providence, R.I., 1980, pp. 15–60. MR 621850
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), no. 3-4, 309–325. MR 559675, DOI 10.1017/S0308210500017170
- J. Duncan and A. Ülger, Almost periodic functionals on Banach algebras, Rocky Mountain J. Math. 22 (1992), no. 3, 837–848. MR 1183691, DOI 10.1216/rmjm/1181072699
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- Brian Forrest, Arens regularity and discrete groups, Pacific J. Math. 151 (1991), no. 2, 217–227. MR 1132386
- Bernard R. Gelbaum, Tensor products of Banach algebras, Canadian J. Math. 11 (1959), 297–310. MR 104162, DOI 10.4153/CJM-1959-032-3
- N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 70 (1987), no. 378, iv+116. MR 912637, DOI 10.1090/memo/0378
- Gilles Godefroy and Bruno Iochum, Arens-regularity of Banach algebras and the geometry of Banach spaces, J. Funct. Anal. 80 (1988), no. 1, 47–59. MR 960222, DOI 10.1016/0022-1236(88)90064-X
- Edmond E. Granirer, On group representations whose $C^{\ast }$-algebra is an ideal in its von Neumann algebra, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, v, 37–52 (English, with French summary). MR 558587
- Edmond E. Granirer, An application of the Radon-Nikodým property in harmonic analysis, Boll. Un. Mat. Ital. B (5) 18 (1981), no. 2, 663–671 (English, with Italian summary). MR 629430 —, Some results on ${A_p}(G)$ submodules of $P{M_p}(G)$, Colloq. Math. 51 (1987), 155-163.
- E. E. Granirer, On some spaces of linear functionals on the algebras $A_p(G)$ for locally compact groups, Colloq. Math. 52 (1987), no. 1, 119–132. MR 891504, DOI 10.4064/cm-52-1-119-132
- E. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra $B(G)$ and of the measure algebra $M(G)$, Rocky Mountain J. Math. 11 (1981), no. 3, 459–472. MR 722579, DOI 10.1216/RMJ-1981-11-3-459
- William L. Green and Anthony To Ming Lau, Strongly finite von Neumann algebras, Math. Scand. 40 (1977), no. 1, 105–112. MR 448104, DOI 10.7146/math.scand.a-11679
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
- Uffe Haagerup, The Grothendieck inequality for bilinear forms on $C^\ast$-algebras, Adv. in Math. 56 (1985), no. 2, 93–116. MR 788936, DOI 10.1016/0001-8708(85)90026-X
- Masamichi Hamana, On linear topological properties of some $C^*$-algebras, Tohoku Math. J. (2) 29 (1977), no. 1, 157–163. MR 442700, DOI 10.2748/tmj/1178240703
- G. Hansel and J.-P. Troallic, On a class of weakly almost periodic mappings, Semigroup Forum 41 (1990), no. 3, 357–372. MR 1065962, DOI 10.1007/BF02573401
- R. E. Harrell and L. A. Karlovitz, The geometry of flat Banach spaces, Trans. Amer. Math. Soc. 192 (1974), 209–218. MR 338737, DOI 10.1090/S0002-9947-1974-0338737-4
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Helge Elbrønd Jensen, Scattered $C^*$-algebras, Math. Scand. 41 (1977), no. 2, 308–314. MR 482242, DOI 10.7146/math.scand.a-11723
- Eberhard Kaniuth, Die Struktur der regulären Darstellung lokalkompakter Gruppen mit invarianter Umgebungsbasis der Eins, Math. Ann. 194 (1971), 225–248 (German). MR 293001, DOI 10.1007/BF01350052
- Eberhard Kaniuth, Der Typ der regulären Darstellung diskreter Gruppen, Math. Ann. 182 (1969), 334–339 (German). MR 260896, DOI 10.1007/BF01350709
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- Anthony To Ming Lau, Closed convex invariant subsets of $L_{p}(G)$, Trans. Amer. Math. Soc. 232 (1977), 131–142. MR 477604, DOI 10.1090/S0002-9947-1977-0477604-5
- Anthony To Ming Lau, $W^*$-algebras and invariant functionals, Studia Math. 56 (1976), no. 3, 253–261. MR 417800, DOI 10.4064/sm-56-3-253-261
- Anthony To Ming Lau and Peter F. Mah, Normal structure in dual Banach spaces associated with a locally compact group, Trans. Amer. Math. Soc. 310 (1988), no. 1, 341–353. MR 937247, DOI 10.1090/S0002-9947-1988-0937247-0
- Anthony To Ming Lau and James C. S. Wong, Weakly almost periodic elements in $L_\infty (G)$ of a locally compact group, Proc. Amer. Math. Soc. 107 (1989), no. 4, 1031–1036. MR 991701, DOI 10.1090/S0002-9939-1989-0991701-0
- Kelly McKennon, Multipliers, positive functionals, positive-definite functions, and Fourier-Stieltjes transforms, Memoirs of the American Mathematical Society, No. 111, American Mathematical Society, Providence, R.I., 1971. MR 0440299
- T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), no. 4, 683–741. MR 513952, DOI 10.1216/RMJ-1978-8-4-683
- Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261, DOI 10.1090/surv/029 A. Pelczynksi and Z. Semedani, Spaces of continuous functions. Ill, Studia Math. 18 (1959), 213-222.
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
- Raymond A. Ryan, The Dunford-Pettis property and projective tensor products, Bull. Polish Acad. Sci. Math. 35 (1987), no. 11-12, 785–792 (English, with Russian summary). MR 961717
- Kazuyuki Saitô, On the preduals of $W^{\ast }$-algebras, Tohoku Math. J. (2) 19 (1967), 324–331. MR 226416, DOI 10.2748/tmj/1178243282
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Martha Smith, Regular representations of discrete groups, J. Functional Analysis 11 (1972), 401–406. MR 0344902, DOI 10.1016/0022-1236(72)90062-6
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- Masamichi Takesaki and Nobuhiko Tatsuuma, Duality and subgroups, Ann. of Math. (2) 93 (1971), 344–364. MR 281843, DOI 10.2307/1970778 —, Duality and subgroups. II, J. Funct. Anal. 11 (1972), 182-190.
- Keith F. Taylor, The type structure of the regular representation of a locally compact group, Math. Ann. 222 (1976), no. 3, 211–224. MR 425007, DOI 10.1007/BF01362578
- Keith F. Taylor, Geometry of the Fourier algebras and locally compact groups with atomic unitary representations, Math. Ann. 262 (1983), no. 2, 183–190. MR 690194, DOI 10.1007/BF01455310
- Elmar Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I, Invent. Math. 6 (1968), 190–196 (German). MR 248288, DOI 10.1007/BF01404824
- Jun Tomiyama, Tensor products of commutative Banach algebras, Tohoku Math. J. (2) 12 (1960), 147–154. MR 115108, DOI 10.2748/tmj/1178244494
- A. Ülger, Arens regularity sometimes implies the RNP, Pacific J. Math. 143 (1990), no. 2, 377–399. MR 1051083
- A. Ülger, Weakly compact bilinear forms and Arens regularity, Proc. Amer. Math. Soc. 101 (1987), no. 4, 697–704. MR 911036, DOI 10.1090/S0002-9939-1987-0911036-X
- A. Ülger, Arens regularity of the algebra $A\hat \otimes B$, Trans. Amer. Math. Soc. 305 (1988), no. 2, 623–639. MR 924772, DOI 10.1090/S0002-9947-1988-0924772-1 —, Arens regularity of the algebra $K(X)$, Monatsh. Math. 105 (1988), 313-318.
- P. S. Wang, On isolated points in the dual spaces of locally compact groups, Math. Ann. 218 (1975), no. 1, 19–34. MR 384993, DOI 10.1007/BF01350065
- F. J. Yeadon, A new proof of the existence of a trace in a finite von Neumann algebra, Bull. Amer. Math. Soc. 77 (1971), 257–260. MR 271748, DOI 10.1090/S0002-9904-1971-12708-8
- N. J. Young, Periodicity of functionals and representations of normed algebras on reflexive spaces, Proc. Edinburgh Math. Soc. (2) 20 (1976/77), no. 2, 99–120. MR 435849, DOI 10.1017/S0013091500010610
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 321-359
- MSC: Primary 22D15; Secondary 22D25, 46H99, 46M05
- DOI: https://doi.org/10.1090/S0002-9947-1993-1147402-7
- MathSciNet review: 1147402