Symmetries of homotopy complex projective three spaces
HTML articles powered by AMS MathViewer
- by Mark Hughes
- Trans. Amer. Math. Soc. 337 (1993), 291-304
- DOI: https://doi.org/10.1090/S0002-9947-1993-1164199-5
- PDF | Request permission
Abstract:
We study symmetry properties of six-dimensional, smooth, closed manifolds which are homotopy equivalent to ${\mathbf {C}}{P^3}$. There are infinitely differentiably distinct such manifolds. It is known that if $m$ is an odd prime, infinitely many homotopy ${\mathbf {C}}{P^3}$’s admit ${{\mathbf {Z}}_m}$-actions whereas only the standard ${\mathbf {C}}{P^3}$ admits an action of the group ${{\mathbf {Z}}_m} \times {{\mathbf {Z}}_m} \times {{\mathbf {Z}}_m}$. We study the intermediate case of ${{\mathbf {Z}}_m} \times {{\mathbf {Z}}_m}$-actions and show that infinitely many homotopy ${\mathbf {C}}{P^3}$’s do admit ${{\mathbf {Z}}_m} \times {{\mathbf {Z}}_m}$-actions for a fixed prime $m$. The major tool involved is equivariant surgery theory. Using a transversality argument, we construct normal maps for which the relevant surgery obstructions vanish allowing the construction of ${{\mathbf {Z}}_m} \times {{\mathbf {Z}}_m}$-actions on homotopy ${\mathbf {C}}{P^3}$’s which are ${{\mathbf {Z}}_m} \times {{\mathbf {Z}}_m}$-homotopy equivalent to a specially chosen linear action on ${\mathbf {C}}{P^3}$. A key idea is to exploit an extra bit of symmetry which is built into our set-up in a way that forces the signature obstruction to vanish. By varying the parameters of our construction and calculating Pontryagin classes, we may construct actions on infinitely many differentiably distinct homotopy ${\mathbf {C}}{P^3}$’s as claimed.References
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI 10.2307/1970717
- L. E. J. Brouwer, Über die periodischen Transformationen der Kugel, Math. Ann. 80 (1919), no. 1, 39–41 (German). MR 1511946, DOI 10.1007/BF01463233
- Anthony Bak, The involution on Whitehead torsion, General Topology and Appl. 7 (1977), no. 2, 201–206. MR 451249
- Anthony Bak, The computation of surgery groups of finite groups with abelian $2$-hyperelementary subgroups, Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976, pp. 384–409. MR 0470029
- Hyman Bass, $L_{3}$ of finite abelian groups, Ann. of Math. (2) 99 (1974), 118–153. MR 347999, DOI 10.2307/1971015
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062 —, Introduction to compact transformation groups, Academic Press, New York, 1973.
- G. Brumfiel and I. Madsen, Evaluation of the transfer and the universal surgery classes, Invent. Math. 32 (1976), no. 2, 133–169. MR 413099, DOI 10.1007/BF01389959
- William Browder and Frank Quinn, A surgery theory for $G$-manifolds and stratified sets, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 27–36. MR 0375348
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743
- Karl Heinz Dovermann, Almost isovariant normal maps, Amer. J. Math. 111 (1989), no. 6, 851–904. MR 1026286, DOI 10.2307/2374779
- Karl Heinz Dovermann, Rigid cyclic group actions on cohomology complex projective spaces, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 3, 487–507. MR 878897, DOI 10.1017/S030500410006686X
- Karl Heinz Dovermann and Mikiya Masuda, Exotic cyclic actions on homotopy complex projective spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), no. 2, 335–376. MR 1071427
- Karl Heinz Dovermann, Mikiya Masuda, and Reinhard Schultz, Conjugation involutions on homotopy complex projective spaces, Japan. J. Math. (N.S.) 12 (1986), no. 1, 1–35. MR 914304, DOI 10.4099/math1924.12.1
- Karl Heinz Dovermann, Mikiya Masuda, and Dong Youp Suh, Rigid versus nonrigid cyclic actions, Comment. Math. Helv. 64 (1989), no. 2, 269–287. MR 997366, DOI 10.1007/BF02564675
- Karl Heinz Dovermann and Ted Petrie, $G$ surgery. II, Mem. Amer. Math. Soc. 37 (1982), no. 260, xxiii+118. MR 652862, DOI 10.1090/memo/0260
- Karl Heinz Dovermann and Melvin Rothenberg, The generalized Whitehead torsion of a $G$-fibre homotopy equivalence, Transformation groups (Osaka, 1987) Lecture Notes in Math., vol. 1375, Springer, Berlin, 1989, pp. 60–88. MR 1006683, DOI 10.1007/BFb0085600
- Karl Heinz Dovermann and Melvin Rothenberg, Equivariant surgery and classifications of finite group actions on manifolds, Mem. Amer. Math. Soc. 71 (1988), no. 379, viii+117. MR 920965, DOI 10.1090/memo/0379 S. Eilenberg, Sur les transformations de la surface de sphere, Fund. Math. 22 (1934), 28-41.
- Mark Hughes, Finite group actions on homotopy complex projective spaces, Math. Z. 199 (1988), no. 1, 133–151. MR 954759, DOI 10.1007/BF01160217
- Mark Hughes, Dihedral group actions on homotopy complex projective three spaces, Pacific J. Math. 150 (1991), no. 1, 97–110. MR 1120714
- Wu-yi Hsiang, Cohomology theory of topological transformation groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85, Springer-Verlag, New York-Heidelberg, 1975. MR 0423384
- Sören Illman, Whitehead torsion and group actions, Ann. Acad. Sci. Fenn. Ser. A I Math. 588 (1974), 45. MR 0377906
- B. von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919), no. 1, 36–38 (German). MR 1511945, DOI 10.1007/BF01463232
- Tsit-yuen Lam, Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Sci. École Norm. Sup. (4) 1 (1968), 91–148. MR 231890 W. Lück, Transformation groups and algebraic $K$-theory, Lecture Notes in Math., vol. 1408, Springer-Verlag, 1989.
- Mikiya Masuda, Smooth involutions on homotopy $\textbf {C}\textrm {P}^3$, Amer. J. Math. 106 (1984), no. 6, 1487–1501. MR 765588, DOI 10.2307/2374402
- Mikiya Masuda, The Kervaire invariant of some fiber homotopy equivalences, Homotopy theory and related topics (Kyoto, 1984) Adv. Stud. Pure Math., vol. 9, North-Holland, Amsterdam, 1987, pp. 57–74. MR 896945, DOI 10.2969/aspm/00910057
- Alan A. Meyerhoff and Ted Petrie, Quasi equivalence of $G$ modules, Topology 15 (1976), no. 1, 69–75. MR 391141, DOI 10.1016/0040-9383(76)90051-3
- D. Montgomery and C. T. Yang, Differentiable actions on homotopy seven spheres, Trans. Amer. Math. Soc. 122 (1966), 480–498. MR 200934, DOI 10.1090/S0002-9947-1966-0200934-1 J. Nielsen, Die Struktur Periodischer Transformationen von Flächen, Danske Vid. Selsk., Mat.-Fys. Medd. 15 (1937), 1-77.
- Ted Petrie, The Atiyah-Singer invariant, the Wall groups $L_{n}(\pi ,\,1)$, and the function $(te^{x}+1)/(te^{x}-1)$, Ann. of Math. (2) 92 (1970), 174–187. MR 319216, DOI 10.2307/1970701 —, Pseudo-equivalences of $G$-manifolds, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1978, pp. 169-210.
- Ted Petrie and John D. Randall, Transformation groups on manifolds, Monographs and Textbooks in Pure and Applied Mathematics, vol. 82, Marcel Dekker, Inc., New York, 1984. MR 748850 R. Schultz, private communication to Y. D. Tsai.
- Julius L. Shaneson, Wall’s surgery obstruction groups for $G\times Z$, Ann. of Math. (2) 90 (1969), 296–334. MR 246310, DOI 10.2307/1970726
- J. Tornehave, Equivariant maps of spheres with conjugate orthogonal actions, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. 275–301. MR 686150
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
- Kazuo Yokoyama, Classification of periodic maps on compact surfaces. I, Tokyo J. Math. 6 (1983), no. 1, 75–94. MR 707840, DOI 10.3836/tjm/1270214327
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 291-304
- MSC: Primary 57R55; Secondary 57R65, 57S17
- DOI: https://doi.org/10.1090/S0002-9947-1993-1164199-5
- MathSciNet review: 1164199