Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



New invariant Einstein metrics on generalized flag manifolds

Author: Andreas Arvanitoyeorgos
Journal: Trans. Amer. Math. Soc. 337 (1993), 981-995
MSC: Primary 53C25; Secondary 53C30
MathSciNet review: 1097162
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalized flag manifold (or a Kählerian $C$-space) is a homogeneous space $G/K$ whose isotropy subgroup $K$ is the centralizer of a torus in $G$. These spaces admit a finite number of Kähler-Einstein metrics. We present new non-Kahler Einstein metrics for certain quotients of $U(n)$, $SO(2n)$ and ${G_2}$. We also examine the isometry question for these metrics.

References [Enhancements On Off] (What's this?)

    A. Arvanitoyeorgos, Invariant Einstein metrics on homogeneous spaces, Ph.D. thesis, University of Rochester, 1991.
  • D. V. Alekseevski, Homogeneous Einstein metrics, Differential geometry and its applications, communications (Brno, 1986) Univ. J. E. Purkyně, Brno, 1987, pp. 1–21. MR 923361
  • D. V. Alekseevskiĭ and A. M. Perelomov, Invariant Kähler-Einstein metrics on compact homogeneous spaces, Funktsional. Anal. i Prilozhen. 20 (1986), no. 3, 1–16, 96 (Russian). MR 868557
  • Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684
  • M. Bordemann, M. Forger, and H. Römer, Homogeneous Kähler manifolds: paving the way towards new supersymmetric sigma models, Comm. Math. Phys. 102 (1986), no. 4, 605–617. MR 824094
  • M. A. Guest, Geometry of maps between generalized flag manifolds, J. Differential Geom. 25 (1987), no. 2, 223–247. MR 880184
  • S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Wiley, New York, 1969.
  • Masahiro Kimura, Homogeneous Einstein metrics on certain Kähler $C$-spaces, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 303–320. MR 1145261, DOI
  • Yosi\B{o} Mut\B{o}, On Einstein metrics, J. Differential Geometry 9 (1974), 521–530. MR 362143
  • Arthur A. Sagle and Ralph E. Walde, Introduction to Lie groups and Lie algebras, Academic Press, New York-London, 1973. Pure and Applied Mathematics, Vol. 51. MR 0360927
  • V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. Prentice-Hall Series in Modern Analysis. MR 0376938
  • Nolan R. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. (2) 96 (1972), 277–295. MR 307122, DOI
  • Zhe Xian Wan, Lie algebras, Pergamon Press, Oxford-New York-Toronto, Ont., 1975. Translated from the Chinese by Che Young Lee; International Series of Monographs in Pure and Applied Mathematics, Vol. 104. MR 0412238
  • Hsien-Chung Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1–32. MR 66011, DOI
  • McKenzie Y. Wang and Wolfgang Ziller, On normal homogeneous Einstein manifolds, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 563–633. MR 839687

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C25, 53C30

Retrieve articles in all journals with MSC: 53C25, 53C30

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society