$\textrm {T}1$ theorems for Besov and Triebel-Lizorkin spaces
HTML articles powered by AMS MathViewer
- by Y.-S. Han and Steve Hofmann
- Trans. Amer. Math. Soc. 337 (1993), 839-853
- DOI: https://doi.org/10.1090/S0002-9947-1993-1097168-4
- PDF | Request permission
Abstract:
We give simple proofs of the $T1$ theorem in the general context of Besov spaces and (weighted) Triebel-Lizorkin spaces. Our approach yields some new results for kernels satisfying weakened regularity conditions, while also recovering previously known results.References
- Kenneth F. Andersen and Russel T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980/81), no. 1, 19–31. MR 604351, DOI 10.4064/sm-69-1-19-31
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- R. Coifman, G. David, Y. Meyer, and S. Semmes, $\omega$-Calderón-Zygmund operators, Harmonic analysis and partial differential equations (El Escorial, 1987) Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 132–145. MR 1013820, DOI 10.1007/BFb0086798
- Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), no. 2, 371–397. MR 763911, DOI 10.2307/2006946
- Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, DOI 10.1016/0022-1236(90)90137-A
- M. Frazier, Y.-S. Han, B. Jawerth, and G. Weiss, The $T1$ theorem for Triebel-Lizorkin spaces, Harmonic analysis and partial differential equations (El Escorial, 1987) Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 168–181. MR 1013823, DOI 10.1007/BFb0086801
- JosĂ© GarcĂa-Cuerva and JosĂ© L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Y.-S. Han and E. T. Sawyer, Para-accretive functions, the weak boundedness property and the $Tb$ theorem, Rev. Mat. Iberoamericana 6 (1990), no. 1-2, 17–41. MR 1086149, DOI 10.4171/RMI/93 Y.-S. Han and S. Hofmann, A weak molecule condition and $T1$ Theorem for certain Triebel-Lizorkin spaces, unpublished manuscript.
- Steve Hofmann, A weak molecule condition for certain Triebel-Lizorkin spaces, Studia Math. 101 (1992), no. 2, 113–122. MR 1149566, DOI 10.4064/sm-101-2-113-122 J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators, and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, Berlin, 1983.
- Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362. MR 542885, DOI 10.1090/S0002-9947-1979-0542885-8
- Pierre Gilles Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 175–187 (French, with English summary). MR 812324, DOI 10.5802/aif.1033 M. Meyer, Continuité Besov de certains opérateurs intégraux singuliers, Thèse de 3e Cycle, Orsay 1985. Y. Meyer, La minimalité de le espace de Besov $\dot B_1^{0,1}$, et la continuité de opérateurs définis par des intégrales singulières, Monografias de Matematicas, vol. 4, Univ. Autonoma de Madrid.
- Kôzô Yabuta, Generalizations of Calderón-Zygmund operators, Studia Math. 82 (1985), no. 1, 17–31. MR 809770, DOI 10.4064/sm-82-1-17-31
- Yong Sheng Han, Björn Jawerth, Mitchell Taibleson, and Guido Weiss, Littlewood-Paley theory and $\epsilon$-families of operators, Colloq. Math. 60/61 (1990), no. 1, 321–359. MR 1096383, DOI 10.4064/cm-60-61-1-321-359
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 839-853
- MSC: Primary 46E35; Secondary 42B20, 47G10
- DOI: https://doi.org/10.1090/S0002-9947-1993-1097168-4
- MathSciNet review: 1097168