Chebyshev type estimates for Beurling generalized prime numbers. II
HTML articles powered by AMS MathViewer
- by Wen-Bin Zhang
- Trans. Amer. Math. Soc. 337 (1993), 651-675
- DOI: https://doi.org/10.1090/S0002-9947-1993-1112550-4
- PDF | Request permission
Abstract:
Let $N(x)$ be the distribution function of the integers in a Beurling generalized prime system. The Chebyshev type estimates for Beurling generalized prime numbers in the general case \[ N(x) = x\sum \limits _{\nu = 1}^n {{A_\nu }} {\log ^{{\rho _\nu } - 1}}x + O(x{\log ^{ - \gamma }}x)\] is a long standing question. In this paper we shall give an affirmative answer to the question by proving that the Chebyshev type estimates \[ 0 < \lim \inf \limits _{x \to \infty } \frac {{\psi (x)}}{x},\quad \lim \sup \limits _{x \to \infty } \frac {{\psi (x)}}{x} < \infty \] hold even under weaker condition \[ \int _1^\infty {{x^{ - 1}}} \left \{ {\sup \limits _{x < \infty } {y^{ - 1}}\left | {N(y) - y\sum \limits _{\nu = 1}^n {{A_\nu }} {{\log }^{{\rho _\nu } - 1}}y} \right |} \right \} dx < \infty \] with $\rho _n=\tau \geq 1$, $0<\rho _1<\rho _2 <\cdots < \rho _n$, and $A_n > 0$. This generalizes a result of Diamond and a result of the present author.References
- Paul T. Bateman and Harold G. Diamond, Asymptotic distribution of Beurling’s generalized prime numbers, Studies in Number Theory, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1969, pp. 152–210. MR 0242778 A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés. I, Acta Math. 68 (1937), 225-291.
- Harold G. Diamond, Asymptotic distribution of Beurling’s generalized integers, Illinois J. Math. 14 (1970), 12–28. MR 252334
- Harold G. Diamond, A set of generalized numbers showing Beurling’s theorem to be sharp, Illinois J. Math. 14 (1970), 29–34. MR 252335
- Harold G. Diamond, Chebyshev estimates for Beurling generalized prime numbers, Proc. Amer. Math. Soc. 39 (1973), 503–508. MR 314782, DOI 10.1090/S0002-9939-1973-0314782-4 —, Chebyshev type estimates in prime number theory, Séminaire de Théorie des Nombres, Année 1974-1975 (Univ. Bordeaux I, Talence), exposé no 24.
- R. S. Hall, Beurling generalized prime number systems in which the Chebyshev inequalities fail, Proc. Amer. Math. Soc. 40 (1973), 79–82. MR 318085, DOI 10.1090/S0002-9939-1973-0318085-3
- Wen-Bin Zhang, Chebyshev type estimates for Beurling generalized prime numbers, Proc. Amer. Math. Soc. 101 (1987), no. 2, 205–212. MR 902528, DOI 10.1090/S0002-9939-1987-0902528-8
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 651-675
- MSC: Primary 11N80; Secondary 11N37
- DOI: https://doi.org/10.1090/S0002-9947-1993-1112550-4
- MathSciNet review: 1112550