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TOTALLY MONOTONE FUNCTIONS
WITH APPLICATIONS TO THE BERGMAN SPACE

B. KORENBLUM, R. O'NEIL, K. RICHARDS, AND K. ZHU

Abstract. Using a theorem of S. Bernstein [1] we prove a special case of the

following maximum principle for the Bergman space conjectured by B. Koren-

blum [3]: There exists a number S e (0, 1) such that if / and g are analytic

functions on the open unit disk D with \f{z)\ < \g{z)\ on 6 < \z\ < 1 then

II/II2 < ll^lh > where || H2 is the L2 norm with respect to area measure on

D . We prove the above conjecture when either / or g is a monomial; in this

case we show that the optimal constant S is greater than or equal to l/%/3 .

1. Introduction

A function /on [0, +00) is totally monotone if (-l)"fln)(x) > 0 for all

nonnegative integers « and all x in [0, +00). It is clear that if t is nonneg-

ative then the function f(x) = e~tx is totally monotone. It turns out that the

functions e~tx are the building blocks for the set of totally monotone functions.

S. N. Bernstein [1] proved that a function on [0, +00) is totally monotone if

and only if there exists a finite positive Borel measure a on [0, +00) such that

f(x)=       e~txdo(t),       xg[0,+oo).
Jo

In this paper we use Bernstein's characterization of totally monotone func-

tions to prove two estimates about the integral of totally monotone functions.

Specifically we prove the following theorems.

Theorem A. Suppose T > 0 and f(x)  is totally monotone on [0, +00).   If
1

r+if(x) >e Tx at the point x = ^W , then

/    f(x)dk(x)> /    e~TxdX(x),
Jo Jo

where dX(x) = e~xdx.

Theorem B. Suppose T > 0 and f(x)  is totally monotone on [0, +00).   //

f(x) < e~Tx for 0 < x < 2, then

/    f(x)dk(x)< /    e~TxdX(x).
Jo Jo
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796 B. KORENBLUM, R. O'NEIL, K. RICHARDS, AND K. ZHU

As an application of the above results we shall obtain estimates on the Berg-

man norm of an analytic function on the open unit disk D in the complex

plane C. Recall that the Bergman space of the unit disk D consists of analytic

functions f(z) on D such that

= ! \f(z)\2dA(
Jo

z) < +CC,

where dA is the normalized area measure on D. ||/|| above is called the

Bergman norm of /. The following conjecture was made in [3] concerning the

Bergman norm of an analytic function on D.

Conjecture. There exists a constant ô e (0, 1) such that if / and g are analytic

in D with \f(z)\ < \g(z)\ for ô < \z\ < 1 then

[\f(z)\2dA(z)< f \g(z)\2dA(z).
Jo Jo

Note that the above inequality is trivial if the zeros of g (counting multi-

plicity) are also zeros of /, because the maximum principle then implies that

\f(z)\ < \g(z)\ for all z g D. It was also proved in [3] that the above conjecture

is true if the zeros of / (counting multiplicity) are zeros of g. In this case the

constant ô is greater than or equal to l/(2e2).

As a consequence of our integral estimates on totally monotone functions we

show that the above conjecture holds if one of the two functions / and g is

a monomial. In this case we also show that the constant S is greater than or

equal to l/\/3 • This answers a question of L. Carleson [2] who originally asked

the question for g(z) = z .

Theorem C. Suppose « > 0 is an integer and f isanalyticin D. If\f(z)\ > \zn\

for l/\f2 < \z\ < 1, then

f \f(z)\2dA(z)> [ \z"\2dA(z).
Jd Jo

Theorem D. Suppose « > 0 ¿s an integer and f is analytic in D. If \f(z)\ <

\z"\ for l/\/3 < |z| < 1, then

[ \f(z)\2dA(z) < f \z"\2dA(z).
Jd Jd

The rest of the paper is organized as follows. In the next section we shall

present a simple proof for Bernstein's characterization of totally monotone func-

tions. In §3 we prove the lower estimates, Theorems A and C. Section 4 is

devoted to the proof of the upper estimates, Theorems B and D. Finally in §5

we give a counterexample to show that the approach in this paper cannot be

used to prove the full conjecture stated earlier.

2. Another proof of Bernstein's theorem

Recall that a function / on [0, +oo) is totally monotone if (-l)"fin)(x) > 0

for all x e [0, +oo) and all integers « > 0. S. N. Bernstein [1] proved that

the class of totally monotone functions on [0, +oo) coincides with the class of

functions / with a representation
/•OO

f(x)= /    e~'xda(t),       xg[0,+oo).
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APPLICATIONS TO THE BERGMAN SPACE 797

Bernstein's original proof was based on some deep properties of exponential

polynomials. A much simpler proof can be found [4]. However, the publication
[4] is not available in English translation and is therefore almost unknown in

the West. For the reader's convenience we include the short proof of Bernstein's

theorem from [4].

Theorem 1. A function f on [0, +oo) is totally monotone if and only if there

exists a finite positive Borel measure o on [0, +oo) suchthat

r°°
f(x) = /    e~tx do(t),       xe[0, +oo).

Jo
Proof. A totally monotone function / has the following properties:

(a) fW'x) = o(x~n)  (x -» +oo), « > 1 ;

0>) A/o00^l/(',+1)WI^ = /(0)-/(+oo),  «>0.
In fact, since (-1 )"ßn)(x) is nonnegative and nonincreasing, we have for x > 0

and « > 1,

|/M(x)| = (-1)"/(">W < \ fx(-l)nJ<H\x)dx

= ̂ |/("-l)w-/("-1)(f)|.

Now (a) follows from induction and (b) can be proved by integration by parts:

i   r°° c_n("+1)  r°°
_L   /      x«\/in+l),xydx = L-LL-   /      Xnf("+X)(X)dx

f'(x)dx = f(0)-f(+œ).
poo

Jo   ■'0

To complete the proof of Bernstein's theorem, we observe that the functions

<Pn(x) = |
(1-f)"       (0<x<n),
0 (n <x < +oo),

converge uniformly on [0, +oo) to the function e x as « —► +oo. Applying

integration by parts again, we get

/»OO /»oo

f(x) - f(+00) = -  /      f'(t) dt= (t- X)f"(t) dt
Jx J X

l—\\(n+l)    r°°
= ... = L_LL— /   (t-x)nßn+x\t)dt

= /    q>n(xt)da„(t),
Jo
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798 B. K0RENBLUM, R. O'NEIL, K. RICHARDS, AND K. ZHU

where
i   r°°

(Jn{t) = ffji   (-l)("+1)«(«i)"/("+1)("0^.

From property (b) we see that the total variation of an over [0, +00) is

1    f°°
- /    n(nt)"\ß"+x\nt)\ dt = f(0) - /(+oo).
n- Jo

By Helly's selection theorem there exists a subsequence {onk(t)} that converges

almost everywhere to a bounded nonnegative nondecreasing function o(t) on

[0, +00). Finally the uniform convergence of <pn(t) allows us to take the limit

under the integral sign and obtain

or

/•OO

f(x)-f (+00)= /    e-txdo(t)
Jo

/•OO

f(x) = /(+00) + /    e-lxdo(t)
Jo10

for all x in [0, +00). Adding to a a mass /(+co) at 0 we obtain Bernstein's

theorem.

Suppose / is totally monotone on [0, +00) and consider the function

F(x) = f(-logx),       0<x<l.

By Bernstein's theorem there exists a positive Borel measure a on [0, +00)

such that
/•OO

f(x)= /    e-'xdo(t)
Jo>0

for all x in [0, +00). It follows easily that
/•OO

F(x)= /    x'do(t)
Jo

for all x in [0, 1]. This motivates the following:

Definition. A function /on [0, 1] is totally monotone if there exists a positive

Borel measure a on [0, +00) such that

yoo

f(x)=   /      XldcT(t)
Jo

for all x in [0,1].

It is clear from the definition that any function f(x) = x' with t > 0 is

totally monotone on [0,1]. Similarly, if ak > 0 for all k > 0 and

00

f(x) = Yakxk> XG[0,1],
fe=0

then / is totally monotone on [0,1]. These are the functions that we shall

use in the estimates of the Bergman norm of an analytic function on the open

unit disk D.
Note that if f(x) = T,T=oakXk with ak > 0 then f(n)(x) > 0 for all « > 0

and x e [0, 1 ). However, it is not true that totally monotone functions on

[0, 1] always satisfy f(n)(x) > 0 for all « > 0 and x e [0, 1).   In fact,
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APPLICATIONS TO THE BERGMAN SPACE 799

sfx is totally monotone on [0, 1] according to our definition, but the second

derivative of y/x is negative on [0, 1 ).

3. The lower estimates

If f(x) >e~Tx for all x e [0, +oo), it is obvious that

/•OO /-OO

/    f(x)dX(x)> /    e~TxdX(x).
Jo Jo

if / is totally monotone and f(x) >e~Tx holds at the single point x = =^ .

The result is sharp in the sense that any other point (different from ~r-¡) will

make the above integral estimate false.

Theorem 2. Suppose T > 0 and f is totally monotone on [0, +oo). If f(x) >

e~Tx at x = y^j, then

poo poo

/    f(x)dX(x)> /    e~TxdX(x),
Jo Jo

where dX(x) = e x dx.

Proof. By Bernstein's theorem, there is a positive Borel measure o on [0, +oo)

such that
poo

f(x)= /    e~lxdo(t)
Jo

for all x > 0. For any a G [0, 1] we have

poo poo   /   poo \

/    f(x)dX(x)=        (       e'txdo(t)\ e~xdx

Jo     '+'     Jo '+'

> [fe-d.lt)] [inf^;

= f(a)aex-a.

Substituting a = j^j we obtain

jf/WAM > rhelí,f(rh) 2 rTT = [ e~" M{x) ■
This completes the proof of Theorem 2.

Corollary 3. Suppose a > 0 and f is totally monotone on [0, 1]. If f(x) > Xa

at x = exp(-^y), then

f f(x)dx> Í xadx.
Jo Jo

Proof. Let x = e~'. Then

pl poo

/   f(x)dx= /    f(e~')dX(t)
Jo Jo
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800 B. KORENBLUM, R. O'NEIL, K. RICHARDS, AND K. ZHU

and
pi poo

/  xadx =       e-a'dX(t).
Jo Jo

Since / is totally monotone on [0, 1], the function g(t) = f(e~') is totally

monotone on [0, +oo). Also f(x) > xa at x = exp(-^y) implies that g(t) >

e~at at t = -W . The desired result now follows from Theorem 2.
a+l

Corollary 4. Suppose « > 0 is an integer and f is analytic in D. If \f(z)\ >

\z"\ for \z\ = exp(-5fSfny), then

[ \f(z)\2dA(z)> [ \z"\2dA(z).
Jd Jd

Proof. Let f(z) = Ylkx>=0akzk . Then for x = exp(-2(n'+1)) we have

r2n

\xneint\2dt = x2n.

k=0

It follows that

5>*iv>x«

for all x = exp(-^y). Since the function Y,V=o \ak\ x   is totally monotone

on [0, 1], Corollary 3 gives

í   ÍY\ak\2xk\ dx> Í x"dx.

This is exactly the desired inequality

I \f(z)\2dA(z)> f \z"\2dA(z).
Jd Jd

Remark. The constant exp(-2(n'+1)) in the above corollary is not unique (at

least in the cases « = 0 and « = 1 ). In fact, for « = 0 and « = 1 we can

replace the constant by l/v^2. Let F(x) denote the function YX=o\ak\2xk >

then F(x) is convex in [0, 1] and hence

F(x) >F(i)+ *"($)(*-i)

for all x in [0, 1]. If F(x) > xn at jc = \ , then

f F(x) dx > f [F(\) + F'(\)(x -\)}dx = F(\)> (xn)(\).
Jo Jo

In the case « = 0, 1, we clearly have (xn)(\) = J0 x" dx.

Corollary 5. Suppose « > 0 is an integer and f is analytic in D. If \f(z)\ >

\zn\ for l/\/2< \z\< 1, then

[ \f(z)\2dA(z) > [ \z"\2dA(z).
Jd Jd

Proof. This follows from Corollary 4 and the above remark.

4. The upper estimates

This section is devoted to the proof of Theorems B and D stated in the

introduction.
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APPLICATIONS TO THE BERGMAN SPACE 801

Theorem 6. Suppose T > 0 and f is totally monotone on [0, +oo). If f(x) <

e~Tx for 0<x < 2, then

/•OO /«OO

/    f(x)dX(x)< /    e~TxdX(x),
Jo Jo

where dX(x) = e~x dx.

Proof. We shall only need the assumption that f(x) < e~Tx for x = 0 and

x = 2. By Theorem 1 we can find a positive Borel measure a on (0, +oo)

such that
/•OO

f(x)= I    e~txdo(t),       xg[0,+oo).
Jo

Applying Fubini's theorem we easily obtain

Consider the function

g(x) = A + Be~2x ,       x>0,

where A and B are determined by the conditions

g(T) T+l

It is easy to see that

Let

1 1

T+l     2(T+1)2'

1

g'(T) =

B

1

h(x) =
x+ 1

g(x),

(T+l)2

,2T

2(T+l)2

x>0.

Then

A'(jc) = -
1

(x+1)2
+ 2Be~2x

1 e2T • e~2x
+

(x+1)2      (T+l)2

= e -2x
,27" ,2x

[(T+l)2     (x+l)2\

It is easy to show that the function e2x/(x + I)2 is increasing on [0, +oc).

Thus h'(x) < 0 for x > T and h'(x) > 0 for 0 < jc < T. This implies that
h(x) attains its maximum value at x = T and we must have h(x) < h(T) = 0

for all x > 0. In other words,

1

x+ 1
< A + Be-2x
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for ail x > 0. It follows that

lo   fWM = J0   T+T
/•OO /«OO

<A /     do(x) + B /    e~2xda(x)
Jo Jo

= Af(0) + Bf(2) <A + Be~2T
i r°°

completing the proof of Theorem 6.

Corollary 7. Suppose a > 0 and f is totally monotone on [0, 1]. If f(x) < xa

for 1/e2 < x < 1, then

í f(x)dx< f xadx.
Jo Jo10 Jo

Proof. This follows from Theorem 6 and the change of variables x = e~'. See

the proof of Corollary 3.

Corollary 8. Suppose « > 0 is an integer and f is analytic in D. If \f(z)\ <

\zn\ for l/e < |z| < 1, then

[ \f(z)\2dA(z)<  i \zn\2dA(z).
Jd Jd

Proof. Let f(z) = ET=oakzk ■ Then |/(z)| < |z"| for l/e < |z| < 1 implies
that

oo 1 /•27t 1 /•27I

\xneint\2dt = x2n
y" 1      t 1      t

k=0

for all l/e < x < 1 . It follows that

Y\ak\2xk < x"
k=0

for all 1 /e2 < x < 1 and hence

yo ^iû,iv dx<J x"dx
oLk=0

since the function Ylk=o \ak\2xk is totally monotone on [0, 1]. This finishes
the proof of Corollary 8.

Remark. The constant l/e in Corollary 8 above is not best possible. The fol-

lowing theorem improves the constant to l/\/l>.

Theorem 9. Suppose « > 0 is an integer and f is an analytic function in D.

// \f(z)\ < \z"\ for l/yß < \z\ < I, then

[ \f(z)\2dA(z)< f \z"\2dA(z).
Jd Jd

Proof. It is easy to see that this is a direct consequence of the following result.
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Theorem 10. Suppose « > 0 is an integer and F(x) = ^jtlo0*-** with nonneg-

ative coefficients. If F(x) < x" for 1/3 < x < 1, then

[ F(x) dx< f xndx = —!— .
Jo ~ Jo n + l

Proof. The case « = 0 is trivial. We assume « > 1 in the rest of the proof.

That F(x) < x" for 1/3 < x < 1  implies that either F(x) < x" for all
x G [0, 1] or there exists c e (0, 1/3] such that F(c) = cn . In the first case

the conclusion is obvious.  So we assume that there exists c e (0, 1/3] such

that F(c) = c" and F(x) <x" for c < x < 1. Thus we have

a0 + ax + ■ ■ + a„ + an+x + ■    =F(l),

ao + axc + + anc" + a„+xcn+x + ■■■ = cn

with F(l) < 1. We solve for an and an+x in terms of the other terms. Multi-

plying the first equation above by -c" and then adding the result to the second,

we get

a„+x(cn+x - cn) +    Y   ak(ck-cn) = cn(l-F(l)),

k^n,n+l

or

Ö71+1

ck — c"
E     akfn~Z

k^n,n+l
cn+l

l--F(l)

1-c

Similarly, we obtain

ck-cn+x      l-cF(l)
*n = ~     Y     Ukfn- -n+l

+

It follows that
• i

/   F(x)dx = Y
Jo TZ,

7C#7!,7I+1

ak

1

k=o

ak

k+l

an
+

O-n+l

k^n,n+l

= E ak
7C#7!,7I+1

k+l     n+l     «+2

ck _ cn+l
+

k+l     (« + l)(c" -c^1)     (n + 2)(cn - cn+x)

«+1 1-c    \n + l     n + 2)

Since c < 1/3 and « > 1, we clearly have

c 1

«+1     «+2

But 1 - F(l) > 0 and 1 - c> 0, we obtain

<0.

L
i i
F(x)dx <

n + l

+ E ak
k¿n,n+l

1 ck _ cn+l
+

Ck -Cn

k + l     («+ l)(c"-c"+x)     (n + 2)(cn - c"+x)
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Writing ck - c" = ck - cn+x - (c" - cn+x) in the above series, we easily get

L
1 i

F(x)dx <
n+l

+ E ak
k^n,n+l

1 1 ck _ cn+l

[k + l     « + 2     (n + l)(n + 2)(cn - cn+x)

The desired result now follows from the following lemma.

Lemma 11. Let

D(k,n) =
1 1 ck _ cn+l

k+l     « + 2     (« +l)(« + 2)(c"-c"+1) '

Then D(k, «) < 0 for all «> 1, k > 0, and c e (0, 1/3].

Proof. First note that D(k, n) = 0 if k = « or « + 1. If k > « + 2, we have

D(k, n) <
1 1 „71+1

+
« + 3     « + 2     («+ l)(n + 2)(c" - cn+x)

c 1

(«+l)(« + 2)(l-c)     (« + 2)(« + 3)

1
2c

n+l\

n + l)(« + l)(« + 3)(l-c)

1 (2     n + l

- (n + l)(n + 3)(l-c)\3    « + 2

<0

It remains to prove the result for 0 < k < « - 1.

When k = 0 and « = 1, a little simplification shows that

D(0'1) = ¿(C-1)^°-

When k = 0 and « > 2, we have

D(k,n) = l-
1 1 + c + ■ ■ ■ + c"

<

« + 2     (n + l)(n + 2)cn

n + 1_1
« + 2      (« + l)(« + 2)cn

« + 1

(« + 2)£
« + 1

1

-(« + 2/
<0.

(«+1)2

j_ 1
¥~ (n + l)2

To prove the remaining case 1 < k < n - 1, we write

D(k,n)
« - k + 1 „7Î-TC+1

(k+l)(n + 2)     (n+l)(n + 2)(l-c)c"~k

Since n-k + 1 > 2, we have

1 „n-k+l >l-CZ>l-C.
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It follows that

n-k+1 1
D(k, n) <

(k+l)(n + 2)     (n + l)(n + 2)c"-k

n-k + 1        ( c„_k k + l
c"-k(k+l)(n + 2)\ (n+l)(n-k+l)J '

Let m = n-k , then m > 1 and

D(k   n)< m+1 (cm k + l
y   '   ; - cm(k +l)(m + k + 2)\        (m + l)(m + k + I]

It is clear that for k > 1

k + l 2

(w + l)(m + fc + 1) - (m + l)(m + 2) '

Thus

/)(£    n)< m+l (cm 2 \
UKK,n' - cm(k+l)(m + k + 2) \        (m+l)(m + 2)J

m+l (I 2

cm(k+l)(m + k + 2) \3m     (m+l)(m + 2)J

<0,

completing the proof of Lemma 11.

5. A COUNTEREXAMPLE

It is very natural to ask whether the conjecture stated in the Introduction

can be proved by using the method of this paper. In other words, one asks if

the following is true: there exists a constant ô e (0, 1) such that if F(x) =

Y;Zo"kxk, G(x) = 2X0M* , ak > 0, bk > 0 (k > 0), and F(x) < G(x)
for ô < x < 1, then

/ F(x)dx< [ G(x)dx.
Jo Jo10

We show that this is false in general.

For any positive integer « let

PW =(x~ TfZl) (* - *)" = E^ •
v +   y *=o

It is clear that P(x) > 0 for l/(« + 1) < x < 1  and it is easy to show that

/0 P(x)dx < 0.  Let {ak} be a sequence of nonnegative numbers such that

dk>\Pk\ for 0<k <n + 1 . Now let

F(x) = YakXk,        G(x) = F(x) + P(x).

k=0

Then all the coefficients of F  and  G are nonnegative,   G(x) > F(x)  for

l/(" + 1) < x < 1, but

/   G(x)dx<  i F(x)dx.
Jo Jo

Since « is arbitrary, no ô exists with the desired property.
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