Quantitative rectifiability and Lipschitz mappings
HTML articles powered by AMS MathViewer
- by Guy David and Stephen Semmes
- Trans. Amer. Math. Soc. 337 (1993), 855-889
- DOI: https://doi.org/10.1090/S0002-9947-1993-1132876-8
- PDF | Request permission
Abstract:
The classical notion of rectifiability of sets in ${{\mathbf {R}}^n}$ is qualitative in nature, and in this paper we are concerned with quantitative versions of it. This issue arises in connection with ${L^p}$ estimates for singular integral operators on sets in ${{\mathbf {R}}^n}$. We give a criterion for one reasonably natural quantitative rectifiability condition to hold, and we use it to give a new proof of a theorem in [D3]. We also give some results on the geometric properties of a certain class of sets in ${{\mathbf {R}}^n}$ which can be viewed as generalized hypersurfaces. Along the way we shall encounter some questions concerning the behavior of Lipschitz functions, with regard to approximation by affine functions in particular. We shall also discuss an amusing variation of the classical Lipschitz and bilipschitz conditions, which allow some singularities forbidden by the classical conditions while still forcing good behavior on substantial sets.References
- Guy David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 157–189 (French). MR 744071
- Guy David, Opérateurs d’intégrale singulière sur les surfaces régulières, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 2, 225–258 (French). MR 956767
- Guy David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoamericana 4 (1988), no. 1, 73–114 (French). MR 1009120, DOI 10.4171/RMI/64
- Guy David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics, vol. 1465, Springer-Verlag, Berlin, 1991. MR 1123480, DOI 10.1007/BFb0091544
- G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J. 39 (1990), no. 3, 831–845. MR 1078740, DOI 10.1512/iumj.1990.39.39040 G. David and S. Semmes, Singular integrals and rectifiable sets in ${{\mathbf {R}}^n}$: au-delà des graphes lipschitziens, Astérisque 193 (1991). —, Analysis of and on uniformly rectifiable sets, manuscript, 1992.
- José R. Dorronsoro, A characterization of potential spaces, Proc. Amer. Math. Soc. 95 (1985), no. 1, 21–31. MR 796440, DOI 10.1090/S0002-9939-1985-0796440-3
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71–79. MR 676987, DOI 10.1016/0001-8708(82)90054-8
- Peter W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic analysis and partial differential equations (El Escorial, 1987) Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 24–68. MR 1013815, DOI 10.1007/BFb0086793
- Peter W. Jones, Lipschitz and bi-Lipschitz functions, Rev. Mat. Iberoamericana 4 (1988), no. 1, 115–121. MR 1009121, DOI 10.4171/RMI/65
- Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1–15. MR 1069238, DOI 10.1007/BF01233418
- Pertti Mattila, Lecture notes on geometric measure theory, Publicaciones del Departamento de Matemáticas, Universidad de Extremadura [Publications of the Mathematics Department of the University of Extremadura], vol. 14, Universidad de Extremadura, Facultad de Ciencias, Departamento de Matemáticas, Badajoz, 1986. MR 931079
- Takafumi Murai, A real variable method for the Cauchy transform, and analytic capacity, Lecture Notes in Mathematics, vol. 1307, Springer-Verlag, Berlin, 1988. MR 944308, DOI 10.1007/BFb0078078
- Stephen W. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces, Trans. Amer. Math. Soc. 311 (1989), no. 2, 501–513. MR 948198, DOI 10.1090/S0002-9947-1989-0948198-0
- Stephen Semmes, Chord-arc surfaces with small constant. I, Adv. Math. 85 (1991), no. 2, 198–223. MR 1093006, DOI 10.1016/0001-8708(91)90056-D
- Stephen Semmes, Differentiable function theory on hypersurfaces in $\textbf {R}^n$ (without bounds on their smoothness), Indiana Univ. Math. J. 39 (1990), no. 4, 985–1004. MR 1087182, DOI 10.1512/iumj.1990.39.39047
- Stephen Semmes, Analysis vs. geometry on a class of rectifiable hypersurfaces in $\textbf {R}^n$, Indiana Univ. Math. J. 39 (1990), no. 4, 1005–1035. MR 1087183, DOI 10.1512/iumj.1990.39.39048
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 J. Väisälä, Invariants for quasisymmetric, quasimöbius, and bilipschitz maps, J. Analyse Math. 50 (1988), 201-233.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 855-889
- MSC: Primary 42B20; Secondary 49Q15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1132876-8
- MathSciNet review: 1132876