On the Cauchy problem for reaction-diffusion equations
HTML articles powered by AMS MathViewer
- by Xuefeng Wang
- Trans. Amer. Math. Soc. 337 (1993), 549-590
- DOI: https://doi.org/10.1090/S0002-9947-1993-1153016-5
- PDF | Request permission
Abstract:
The simplest model of the Cauchy problem considered in this paper is the following $(\ast )$ \[ \begin {array}{*{20}{c}} {{u_t} = \Delta u + {u^p},} \hfill & {x \in {R^n},t > 0,u \geq 0,p > 1,} \hfill \\ {u{|_{t = 0}} = \phi \in {C_B}({R^n}),} \hfill & {\phi \geq 0,\phi \not \equiv 0.} \hfill \\ \end {array} \;\] It is well known that when $1 < p \leq (n + 2)/n$, the local solution of $(\ast )$ blows up in finite time as long as the initial value $\phi$ is nontrivial; and when $p > (n + 2)/n$, if $\phi$ is "small", $(\ast )$ has a global classical solution decaying to zero as $t \to + \infty$, while if $\phi$ is "large", the local solution blows up in finite time. The main aim of this paper is to obtain optimal conditions on $\phi$ for global existence and to study the asymptotic behavior of those global solutions. In particular, we prove that if $n \geq 3$, $p > n/(n - 2)$, \[ 0 \leq \phi (x) \leq \lambda {u_s}(x) = \lambda {\left ( {\frac {{2(n - 2)}} {{{{(p - 1)}^2}}}\left ( {p - \frac {n} {{n - 2}}} \right )} \right )^{1/(p - 1)}}|x{|^{ - 2/(p - 1)}}\] (${u_s}$ is a singular equilibrium of $(\ast )$) where $0 < \lambda < 1$, then $(\ast )$ has a (unique) global classical solution $u$ with $0 \leq u \leq \lambda {u_s}$ and \[ u(x,t) \leq {(({\lambda ^{1 - p}} - 1)(p - 1)t)^{ - 1/(p - 1)}}.\] (This result implies that ${u_0} \equiv 0$ is stable w.r.t. to a weighted ${L^\infty }$ topology when $n \geq 3$ and $p > n/(n - 2)$.) We also obtain some sufficient conditions on $\phi$ for global nonexistence and those conditions, when combined with our global existence result, indicate that for $\phi$ around ${u_s}$, we are in a delicate situation, and when $p$ is fixed, ${u_0} \equiv 0$ is "increasingly stable" as the dimension $n \uparrow + \infty$. A slightly more general version of $(\ast )$ is also considered and similar results are obtained.References
- D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), no.ย 1, 33โ76. MR 511740, DOI 10.1016/0001-8708(78)90130-5
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampรจre equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Catherine Bandle and Howard A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc. 316 (1989), no.ย 2, 595โ622. MR 937878, DOI 10.1090/S0002-9947-1989-0937878-9
- Catherine Bandle and Howard A. Levine, Fujita type results for convective-like reaction diffusion equations in exterior domains, Z. Angew. Math. Phys. 40 (1989), no.ย 5, 665โ676 (English, with French and German summaries). MR 1013561, DOI 10.1007/BF00945870
- Luis A. Caffarelli, Basilis Gidas, and Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no.ย 3, 271โ297. MR 982351, DOI 10.1002/cpa.3160420304 R. Fowler, The solution of Emdenโs and similar differential equations, Monthly Notices Roy. Astronom. Soc. 91 (1930), 63-91. โ, Further studies of Emdenโs and similar differential equations, Quarterly J. Math. Oxford Ser. 2 (1931), 259-288.
- Avner Friedman, A strong maximum principle for weakly subparabolic functions, Pacific J. Math. 11 (1961), 175โ184. MR 123096
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Avner Friedman and Bryce McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), no.ย 2, 425โ447. MR 783924, DOI 10.1512/iumj.1985.34.34025
- Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109โ124 (1966). MR 214914 โ, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Proc. Sympos. Pure Math. vol. 18, part I, Amer. Math. Soc., Providence, R. I., 1968, pp. 138-161.
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no.ย 3, 209โ243. MR 544879 โ, Symmetry of positive solutions of nonlinear elliptic equations in ${R^n}$, Advances in Math. Suppl. Stud. 7A, Math. Anal. Appl., part A, 1981, pp. 369-402.
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no.ย 4, 525โ598. MR 615628, DOI 10.1002/cpa.3160340406
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Jack Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. MR 0508721
- Alain Haraux and Fred B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), no.ย 2, 167โ189. MR 648169, DOI 10.1512/iumj.1982.31.31016
- Kantaro Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503โ505. MR 338569
- D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241โ269. MR 340701, DOI 10.1007/BF00250508
- Stanley Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305โ330. MR 160044, DOI 10.1002/cpa.3160160307
- Kusuo Kobayashi, Tunekiti Sirao, and Hiroshi Tanaka, On the growing up problem for semilinear heat equations, J. Math. Soc. Japan 29 (1977), no.ย 3, 407โ424. MR 450783, DOI 10.2969/jmsj/02930407 O. Ladyzenskaja, U. Solonikov, and N. Uralceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, R. I., 1968.
- Tzong-Yow Lee and Wei-Ming Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc. 333 (1992), no.ย 1, 365โ378. MR 1057781, DOI 10.1090/S0002-9947-1992-1057781-6
- H. A. Levine, The long-time behaviour of solutions of reaction-diffusion equations in unbounded domains: a survey, Ordinary and partial differential equations, Vol. II (Dundee, 1988) Pitman Res. Notes Math. Ser., vol. 216, Longman Sci. Tech., Harlow, 1989, pp.ย 97โ118. MR 1031726
- Howard A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), no.ย 2, 262โ288. MR 1056055, DOI 10.1137/1032046
- Wei-Ming Ni, Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp.ย 229โ241. MR 843611, DOI 10.1090/pspum/045.2/843610
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no.ย 4, 493โ529. MR 662915, DOI 10.1512/iumj.1982.31.31040 W.-M. Ni and J. Serrin, Topics in partial differential equations, Lecture Notes, Univ. of Minnesota, 1987-1988.
- Wei-Ming Ni and Shoji Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math. 5 (1988), no.ย 1, 1โ32. MR 924742, DOI 10.1007/BF03167899 L. A. Peletier, D. Terman, and F. B. Weissler, On the equation $\Delta u + \frac {1} {2}x \cdot \nabla u + f(u) = 0$, Arch. Rational Mech. Anal. 94 (1986), 83-99.
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1971/72), 979โ1000. MR 299921, DOI 10.1512/iumj.1972.21.21079
- Fred B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^{p}$, Indiana Univ. Math. J. 29 (1980), no.ย 1, 79โ102. MR 554819, DOI 10.1512/iumj.1980.29.29007
- Fred B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), no.ย 1-2, 29โ40. MR 599472, DOI 10.1007/BF02761845
- Qi Xiao Ye and Zheng Yuan Li, Fanying kuosan fangcheng yinlun, Xiandai Shuxue Jichu Congshu. [Foundations of Modern Mathematics Series], Kexue Chubanshe (Science Press), Beijing, 1990 (Chinese). MR 1113267
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 549-590
- MSC: Primary 35K57; Secondary 35B40
- DOI: https://doi.org/10.1090/S0002-9947-1993-1153016-5
- MathSciNet review: 1153016