Applying coordinate products to the topological identification of normed spaces
HTML articles powered by AMS MathViewer
- by Robert Cauty and Tadeusz Dobrowolski
- Trans. Amer. Math. Soc. 337 (1993), 625-649
- DOI: https://doi.org/10.1090/S0002-9947-1993-1210952-9
- PDF | Request permission
Abstract:
Using the ${l^2}$-products we find pre-Hilbert spaces that are absorbing sets for all Borelian classes of order $\alpha \geq 1$. We also show that the following spaces are homeomorphic to $\Sigma ^\infty$, the countable product of the space $\Sigma = \{(x_n) \in R^\infty : (x_n)$ is bounded}: (1) every coordinate product $\prod _C H_n$ of normed spaces $H_n$ in the sense of a Banach space $C$, where each $H_n$ is an absolute $F_{\sigma \delta }$-set and infinitely many of the $H_n$’s are ${Z_\sigma }$-spaces, (2) every function space $\tilde {L}^p = \cap _{p\prime <p}L^{p\prime }$ with the ${L^q}$-topology, $0<q<p \leq \infty$, (3) every sequence space ${\tilde l^p} = { \cap _{p < p\prime }}{l^{p\prime }}$ with the $l^q$-topology, $0 \leq p < q < \infty$. We also note that each additive and multiplicative Borelian class of order $\alpha \geq 2$, each projective class, and the class of nonprojective spaces contain uncountably many topologically different pre-Hilbert spaces which are $Z_\sigma$-spaces.References
- C. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1964/65), 251–288. MR 178322, DOI 10.4064/fm-56-3-250-288 C. Bessaga and A. Pelczyński, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
- Mladen Bestvina and Jerzy Mogilski, Linear maps do not preserve countable dimensionality, Proc. Amer. Math. Soc. 93 (1985), no. 4, 661–666. MR 776199, DOI 10.1090/S0002-9939-1985-0776199-6
- Mladen Bestvina and Jerzy Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), no. 3, 291–313. MR 856522, DOI 10.1307/mmj/1029003410
- Robert Cauty, Caractérisation topologique de l’espace des fonctions dérivables, Fund. Math. 138 (1991), no. 1, 35–58 (French, with English summary). MR 1122277, DOI 10.4064/fm-138-1-35-58
- Robert Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de ${\scr L}^1$, Fund. Math. 139 (1991), no. 1, 23–36 (French, with English summary). MR 1141291, DOI 10.4064/fm-139-1-23-36
- Robert Cauty, Sur deux espaces de fonctions non dérivables, Fund. Math. 141 (1992), no. 3, 195–214 (French, with English summary). MR 1199234, DOI 10.4064/fm-141-3-195-214
- Robert Cauty, Un exemple d’ensembles absorbants non équivalents, Fund. Math. 140 (1991), no. 1, 49–61 (French, with English summary). MR 1139086, DOI 10.4064/fm-140-1-49-61
- J. J. Dijkstra, J. van Mill, and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of $(l^2_f)^\omega$, Pacific J. Math. 152 (1992), no. 2, 255–273. MR 1141795
- Jan J. Dijkstra and Jerzy Mogilski, The topological product structure of systems of Lebesgue spaces, Math. Ann. 290 (1991), no. 3, 527–543. MR 1116236, DOI 10.1007/BF01459258
- T. Dobrowolski, S. P. Gul′ko, and J. Mogilski, Function spaces homeomorphic to the countable product of $l^f_2$, Topology Appl. 34 (1990), no. 2, 153–160. MR 1041769, DOI 10.1016/0166-8641(90)90077-F
- T. Dobrowolski, W. Marciszewski, and J. Mogilski, On topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), no. 1, 307–324. MR 1065602, DOI 10.1090/S0002-9947-1991-1065602-X T. Dobrowolski and J. Mogilski, Certain sequence and function spaces homeomorphic to the countable product of $l_f^2$, J. London Math. Soc. (to appear).
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5 S. Mazur and L. Sternbach, Über die Borelschen Typen von linearen Mengen, Studia Math. 4 (1933), 48-55.
- H. Toruńczyk, On Cartesian factors and the topological classification of linear metric spaces, Fund. Math. 88 (1975), no. 1, 71–86. MR 391102, DOI 10.4064/fm-88-1-71-86
- H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of $l_{2}$-manifolds, Fund. Math. 101 (1978), no. 2, 93–110. MR 518344, DOI 10.4064/fm-101-2-93-110
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247–262. MR 611763, DOI 10.4064/fm-111-3-247-262
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 625-649
- MSC: Primary 57N17; Secondary 46B99
- DOI: https://doi.org/10.1090/S0002-9947-1993-1210952-9
- MathSciNet review: 1210952