Super efficiency in vector optimization
HTML articles powered by AMS MathViewer
- by J. M. Borwein and D. Zhuang
- Trans. Amer. Math. Soc. 338 (1993), 105-122
- DOI: https://doi.org/10.1090/S0002-9947-1993-1098432-5
- PDF | Request permission
Abstract:
We introduce a new concept of efficiency in vector optimization. This concept, super efficiency, is shown to have many desirable properties. In particular, we show that in reasonable settings the super efficient points of a set are norm-dense in the efficient frontier. We also provide a Chebyshev characterization of super efficient points for nonconvex sets and a scalarization theory when the underlying set is convex.References
- Harold P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones, J. Math. Anal. Appl. 71 (1979), no. 1, 232–241. MR 545870, DOI 10.1016/0022-247X(79)90226-9
- J. Borwein, Proper efficient points for maximizations with respect to cones, SIAM J. Control Optim. 15 (1977), no. 1, 57–63. MR 434441, DOI 10.1137/0315004
- J. M. Borwein, The geometry of Pareto efficiency over cones, Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), no. 2, 235–248 (English, with German and Russian summaries). MR 640689, DOI 10.1080/02331938008842650
- J. M. Borwein, Continuity and differentiability properties of convex operators, Proc. London Math. Soc. (3) 44 (1982), no. 3, 420–444. MR 656244, DOI 10.1112/plms/s3-44.3.420
- Jonathan M. Borwein, On the existence of Pareto efficient points, Math. Oper. Res. 8 (1983), no. 1, 64–73. MR 703826, DOI 10.1287/moor.8.1.64
- J. M. Borwein, Norm duality for convex processes and applications, J. Optim. Theory Appl. 48 (1986), no. 1, 53–64. MR 825384, DOI 10.1007/BF00938589 —, Convex cones, minimality notions and consequences, Recent Advances and Historical Development of Vector Optimization (J. Jahn and W. Krabs, eds.), Springer-Verlag, New York, 1987, pp. 64-73.
- J. P. Dauer and W. Stadler, A survey of vector optimization in infinite-dimensional spaces. II, J. Optim. Theory Appl. 51 (1986), no. 2, 205–241. MR 870124, DOI 10.1007/BF00939823 J. P. Dauer and O. A. Saleh, A characterization of proper minimal points as solutions of sublinear optimization problems (to appear).
- Arthur M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618–630. MR 229453, DOI 10.1016/0022-247X(68)90201-1
- Roger Hartley, On cone-efficiency, cone-convexity and cone-compactness, SIAM J. Appl. Math. 34 (1978), no. 2, 211–222. MR 487977, DOI 10.1137/0134018
- M. I. Henig, Proper efficiency with respect to cones, J. Optim. Theory Appl. 36 (1982), no. 3, 387–407. MR 663345, DOI 10.1007/BF00934353
- Richard B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York-Heidelberg, 1975. MR 0410335 L. Hurwicz, Programming in linear spaces, Studies in Linear and Nonlinear Programming, (K. Arrow, L. Hurwicz and H. Uzawa, eds.), Stanford Univ. Press, Standford, Calif., 1958, pp. 38-102.
- Graham Jameson, Ordered linear spaces, Lecture Notes in Mathematics, Vol. 141, Springer-Verlag, Berlin-New York, 1970. MR 0438077
- Johannes Jahn, Mathematical vector optimization in partially ordered linear spaces, Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], vol. 31, Verlag Peter D. Lang, Frankfurt am Main, 1986. MR 830661
- Johannes Jahn, Scalarization in vector optimization, Math. Programming 29 (1984), no. 2, 203–218. MR 745408, DOI 10.1007/BF02592221
- Johannes Jahn, A generalization of a theorem of Arrow, Barankin, and Blackwell, SIAM J. Control Optim. 26 (1988), no. 5, 999–1005. MR 957650, DOI 10.1137/0326055
- V. L. Klee Jr., Separation properties of convex cones, Proc. Amer. Math. Soc. 6 (1955), 313–318. MR 68113, DOI 10.1090/S0002-9939-1955-0068113-7
- H. W. Kuhn and A. W. Tucker, Nonlinear programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, Calif., 1951, pp. 481–492. MR 0047303
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731 D. M. Zhuang, Regularity and minimality properties of set-valued structures in optimization, Ph.D Dissertation, Dalhousie Univ., 1989.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 338 (1993), 105-122
- MSC: Primary 90C29; Secondary 52A41
- DOI: https://doi.org/10.1090/S0002-9947-1993-1098432-5
- MathSciNet review: 1098432