Sets of determination for harmonic functions
HTML articles powered by AMS MathViewer
- by Stephen J. Gardiner PDF
- Trans. Amer. Math. Soc. 338 (1993), 233-243 Request permission
Abstract:
Let $h$ denote a positive harmonic function on the open unit ball $B$ of Euclidean space ${{\mathbf {R}}^n}\;(n \geq 2)$. This paper characterizes those subsets $E$ of $B$ for which ${\sup _E}H/h = {\sup _B}H/h$ or ${\inf _E}H/h = {\inf _B}H/h$ for all harmonic functions $H$ belonging to a specified class. In this regard we consider the classes of positive harmonic functions, differences of positive harmonic functions, and harmonic functions with a one-sided quasi-boundedness condition. We also consider the closely related question of representing functions on the sphere $\partial B$ as sums of Poisson kernels corresponding to points in $E$.References
- A. F. Beardon, Montel’s theorem for subharmonic functions and solutions of partial differential equations, Proc. Cambridge Philos. Soc. 69 (1971), 123–150. MR 269863, DOI 10.1017/s030500410004648x
- Arne Beurling, A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I No. 372 (1965), 7. MR 0188466
- F. F. Bonsall, Decompositions of functions as sums of elementary functions, Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 146, 129–136. MR 841422, DOI 10.1093/qmath/37.2.129
- F. F. Bonsall, Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 471–477. MR 908454, DOI 10.1017/S0013091500026869
- F. F. Bonsall and D. Walsh, Vanishing $l^1$-sums of the Poisson kernel, and sums with positive coefficients, Proc. Edinburgh Math. Soc. (2) 32 (1989), no. 3, 431–447. MR 1015486, DOI 10.1017/S0013091500004685
- Björn Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc. (3) 33 (1976), no. 2, 238–250. MR 409847, DOI 10.1112/plms/s3-33.2.238
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5 N. Dudley-Ward, Doctoral thesis, University of York, 1991.
- Matts Essén, On minimal thinness, reduced functions and Green potentials, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 87–106. MR 1200189, DOI 10.1017/S0013091500005915
- S. J. Gardiner and M. Klimek, Convexity and subsolutions of partial differential equations, Bull. London Math. Soc. 18 (1986), no. 1, 41–43. MR 841366, DOI 10.1112/blms/18.1.41
- W. K. Hayman, Atomic decompositions, Recent advances in Fourier analysis and its applications (Il Ciocco, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 315, Kluwer Acad. Publ., Dordrecht, 1990, pp. 597–611. MR 1081364
- W. K. Hayman and T. J. Lyons, Bases for positive continuous functions, J. London Math. Soc. (2) 42 (1990), no. 2, 292–308. MR 1083447, DOI 10.1112/jlms/s2-42.2.292
- Peter Sjögren, Une propriété des fonctions harmoniques positives, d’après Dahlberg, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976) Lecture Notes in Math., Vol. 563, Springer, Berlin, 1976, pp. 275–282 (French). MR 0588344
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 338 (1993), 233-243
- MSC: Primary 31B05
- DOI: https://doi.org/10.1090/S0002-9947-1993-1100694-2
- MathSciNet review: 1100694