On the characterization of a Riemann surface by its semigroup of endomorphisms
HTML articles powered by AMS MathViewer
- by A. Erëmenko
- Trans. Amer. Math. Soc. 338 (1993), 123-131
- DOI: https://doi.org/10.1090/S0002-9947-1993-1106188-2
- PDF | Request permission
Abstract:
Suppose ${D_1}$ and ${D_2}$ be Riemann surfaces which have bounded nonconstant holomorphic functions. Denote by $E({D_i})$, $i = 1,2$, the semigroups of all holomorphic endomorphisms. If $\phi :E({D_1}) \to E({D_2})$ is an isomorphism of semigroups then there exists a conformal or anticonformal isomorphism $\psi :{D_1} \to {D_2}$ such that $\phi$ is the conjugation by $\psi$. Also the semigroup of injective endomorphisms as well as some parabolic surfaces are considered.References
- Lipman Bers, On rings of analytic functions, Bull. Amer. Math. Soc. 54 (1948), 311–315. MR 24970, DOI 10.1090/S0002-9904-1948-08992-3 P. Fatou, Sur l’itération analytique et les substitutions permutables, J. de Math. 2 (1923), 343.
- Maurice Heins, Selected topics in the classical theory of functions of a complex variable, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1962. MR 0162913
- A. Hinkkanen, Functions conjugating entire functions to entire functions and semigroups of analytic endomorphisms, Complex Variables Theory Appl. 18 (1992), no. 3-4, 149–154. MR 1157923, DOI 10.1080/17476939208814541
- Gaston Julia, Mémoire sur la permutabilité des fractions rationnelles, Ann. Sci. École Norm. Sup. (3) 39 (1922), 131–215 (French). MR 1509242, DOI 10.24033/asens.740
- K. D. Magill Jr., A survey of semigroups of continuous selfmaps, Semigroup Forum 11 (1975/76), no. 3, 189–282. MR 393330, DOI 10.1007/BF02195270 J. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math. 28 (1937), 261-264.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 338 (1993), 123-131
- MSC: Primary 30D05; Secondary 20M20, 30F20
- DOI: https://doi.org/10.1090/S0002-9947-1993-1106188-2
- MathSciNet review: 1106188