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INVERSE SCATTERING FOR SINGULAR POTENTIALS
IN TWO DIMENSIONS

ZIQI SUN AND GÜNTHER UHLMANN

Abstract. We consider the Schrödinger equation for a compactly supported

potential having jump type singularities at a subdomain of R2 . We prove that

knowledge of the scattering amplitude at a fixed energy, determines the location

of the singularity as well as the jump across the curve of discontinuity. This

result follows from a similar result for the Dirichlet to Neumann map associated

to the Schrödinger equation for a compactly supported potential with the same

type of singularities.

1. Introduction and statement of the results

In this paper we consider the Schrödinger equation for a compactly supported

potential, q , having jump type singularities at a subdomain of K2. We prove

that knowledge of the scattering amplitude at a fixed energy, Ao , determines the

location of the singularity as well as the jump across the curve of discontinuity.

This problem is reduced to the study of the Dirichlet to Neumann map for

the Schrödinger operator -A + q - X$ in a bounded domain of R2 . (For the

application considered here it is enough to consider the domain to be a ball

containing the support of q .) We prove that in dimension two the Dirichlet to

Neumann map for the Schrödinger operator -A + q-X^ determines uniquely

the location of the singularity of q as well as its jump across the curve of

discontinuity.
The scattering amplitude of a potential q £ L°°(Rn) with compact support is

defined via the outgoing eigenfunctions. Namely, MX £ R\0, co £ S"~x , there

exists i//+ (X, x, co), solution of

(1.1) (-A + q-X2)<p+ = 0

satisfying

(1.2) W, = eax- + M\x¡n\tfM + Ö(|x|-«-')/2+'))

with 0 = x/|x|. The scattering amplitude, aq(X, 0, to), measures the effect of

the potential q on plane waves of the form ellx'w .
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The inverse scattering problem at a fixed frequency Xq g R\0 is to study the

map

(1.3) Q^aqJo

where

(1.4) aq,xQ(9,to) = aq(Xo,9,co).

In dimensions n > 3 the map s/^ is formally overdetermined in the sense

that we want to determine a function of «-variables from a function depending

on 2(/i - 1) variables. Injectivity of s/¿0 was proved by Novikov [No] in this

case. This result can also be proven, as we shall indicate below, as a conse-
quence of the global uniqueness result proven by Sylvester and Uhlmann for

the Dirichlet to Neumann map Aq_xi [S-U, I]. See §2 for more details.

However, injectivity of J3^0 is an open question in the 2-dimensional case.

The difficulty is that this is a formally determined problem in this case. In-

jectivity of stf^ f°r Q cl°se t0 zero was proven by Novikov [No]. Again this

result follows from the corresponding result for the Dirichlet to Neumann map,

\-x2 ' proven by Sylvester and Uhlmann [S-U, II]. Sun and Uhlmann [Su-U,

I] used the results of [Su-U, II] for the Dirichlet to Neumann to prove that J^0

is locally injective near most potentials (an open and dense set of potentials in

the W1'00 topology) and globally injective for pairs of potentials in an open

and dense set in the Wx'°° x Wx'°° topology.

In this paper we consider potentials q¡ £ F°°(K2), j = 1,2, with com-

pact support, having jump type singularities across the boundary of a bounded

smooth domain SiJ0cR2, j = 1, 2. More precisely,

Theorem 1. Let q¡ £ Cx(Sl[), q¡ £ C1(K2\Í2¿), ; = 1,2. Also assume that

id] - qj)\mj * 0, i = 1,2. // s/^tqO = ^0(q2), then Q¿ = Q2 and

ill - Qi~)\dci' = ÍQ2 - ^2")Ian2 where qj (resp. qj) denotes the interior (resp.

exterior) limit of q¡ on dSlJ0.

We now define the Dirichlet to Neumann map. Assume that q £ L°°(Si),

where fiel" is a bounded smooth domain. Assume also that X2, £ R\0 is

not a Dirichlet eigenvalue for -A + q . Then for every / G Hx/2(dSi) there is

a unique solution u £ Hx(Sl) of the Dirichlet problem

(1.5) (-A + q-X2o)u = 0,        u\da = f

Then we define

c-6» A^(/)=I^L
with u a solution of (1.5) and v the outer unit normal to dSl. The inverse

problem is then to study the map

(1.7) f-V*

Injectivity of A was proven in [S-U, I] in the case n > 3 for q £ Coc(Sl).

This was extended to q £ L°°(Si) in [N-S-U]. This problem is formally overde-

termined in this case. For the formally determined 2-dimensional case injec-
tivity of A was proved in a Wx'°°(Si) neighborhood of q = 0 [S-U, II]. This
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was extended by Sun to potentials close to constant [Su, I]. Recently, Sun and

Uhlmann [Su-U, II] proved that A is injective near most potentials (an open

and dense set in Wx ,0°(ß)). In this paper we prove

Theorem 2. Let q¡ £ Lco(Sï) where Si is a bounded smooth domain in R2 and

qj £ Cx(Sl0) > Qj s Cx(Sl\SlJ0) where SiJ0 is a bounded smooth domain such that

SlJ0 cSl, 7=1,2. Assume that X2, £ R is not an eigenvalue for -A + qj, and

(tf-flpM^O, j =1,2. If

(L8) K-xi = K-xi-

then

SlXo = Sl2o   and   (q+ - ?f)|ani = (q2+ - g2~)lat^

with qf defined as in Theorem 1.

In §2 we shall show that Theorem 2 implies Theorem 1. The proof of Theo-

rem 2 consists in showing that the hypothesis (1.8) implies that qi-q2 G C°(Sl).

This is done by using an extension of the special solutions constructed in [S-U,

II] to potentials with jump type singularities across a submanifold.

Isakov [I] has considered earlier the inverse transmission problem and ob-

tained several interesting uniqueness results. However, his methods do not

apply here.
The plan of this paper is as follows: In §2 we shall prove Theorem 1 and

Theorem 2, and in §3 we shall prove a technical proposition needed in §2.

2. Proofs of the theorems

First we show how to prove Theorem 1 using Theorem 2. It is well known by

now how to relate the Dirichlet to Neumann map A?_A2 with the fixed energy

scattering amplitude a(Xo, 9, co) in any dimension. We sketch the procedure

below. We assume q £ L°°(W), supp<? ç 5(0, R). Let Gq(x, y, X0) be the

outgoing Green's kernel for - A + q - X\ . The single-layer operator, which is an

invertible operator from Hx/2(dSl) to Hi,2(dSl), is defined by

(2.1) 3q_nf(x)= [ Gq(x,y,X0)f(y)dS
0 JdB(0,R)

where dS denotes surface measure.

It was proven in [N] (see Theorem 1.6; the proof is also valid in two dimen-

sions) that

(2-2) V,2 - ^

is injective. More precisely (see (1.40) in [N])

(2-3) Aq_ll = A_xl+^\l-(^)-X

where 3'+ ,2 is as in (2.1) with q = 0. Next we sketch how to prove that the

map

(2-4) 3'q_ll^s/h(q)

is injective.
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This is an old result of Berezanskii [B] who showed how to go from the far

field (s^oil)) to me near neld (■S^'a-iA • The main element is the asymptotic

expansion of the outgoing Green's kernel, namely

piXo\x\
(2.5) Gq(x,y,Xo) = ■,,„_„„ V+(¿o, y, 9) + 0(\x\~^x^2-x)

with 0 = -x/|x| and y/+ the outgoing eigenfunction. Now if &?x0(qi) =

^ote), by (2.5) and (1.1) we get

(2.6) Gqi(x,y,Xo)- Gqi(x, y, X0) = OCxr«"-»/2"1 M"^1)/2-1).

Now
cp(x,y) = Gq,(x, y, X0) - Gq2(x, y, X0)

solves

(-Ax-X2o)(p = Q   for |x| >R, \y\ > R.

Therefore by Rellich's lemma we obtain that

Gqx(x, y, Xo) = Gq2(x, y, Xo)   for |x|, \y\ >R

proving the injectivity of the map (2.4).
In this way, we have reduced the proof of Theorem 1 to the proof of Theorem

2.
Theorem 2 follows readily from the following

Proposition 2.1. Assume Si, Xo, SlJ0, q¡, j = 1,2, as in Theorem 2 with

A?1_^ = Ai2_A2. Then q{ - q2 £ C°(Si).

Before giving a proof of Proposition 2.1, we need to recall the construction

of special solutions of (-A + q)u = 0, where q £ L°° with compact support.

Proposition 2.2 [S-U, II]. Let Ç £ C2 with Ç • Ç = 0, q £ F°°(R2) with compact
support, and -1 < ô < 0. Then there exists a constant Ci = Ci(S) such that

for |C| > Ci||(l-(-|x|2)^||Loo(K2), there exists a unique solution of (-A + q)uq = 0

in R2 of the form

(2.7) uq(x,Q = ex^(l + y/q(x,Q)

with y/q £ Lfi(R2). Furthermore there exists a constant C2 = C2(6, ||¿7||l°°(r2))

such that

(2.8) IIMl¿(R2)<C2/K|.

Here F](R2) is the weighted L2 space:

(2.9) L2(R2) = j/; J (\ + \x\2)â\f(x)\2dx < ̂ J .

If we choose

(2.10) C = \(ik + Jk),        k = (ki,k2)£R2,J=(®{   ¿V^v^T,

then a straightforward computation shows that

d(d + (k2 + iki))yq - qy/q = q.

The above proposition follows directly from the lemma below.
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Lemma 2.1 [S-U, II]. Let g £ F°°(R2), with compact support and f £ Lj+l,

-1 < S < 0, and / G C. Then there exists a constant C3 = C3(r5) such that for

\l\ > C3IKI + |x|2)g||£oo(R2) there exists a unique function co £ Lj(R2) satisfying

(2.11) d(d + l)co-gco = f   inR2.

Moreover

IMIi2(R2) <(C4/|/|)ll/lli2+1(R2),

w/zere Ca = Ca(S , WgW^cft?)) is a constant.

In [S-U, II] it was also proven that if we assume in addition that q £ C1 (R2)

then y/q has an asymptotic expansion for |Ç| large of the form

(2.12) ^,C) = ^. + _^|Ï,       xia#, .

with a, b £ Lj(R2), -1 < ö < 0. Moreover,

llall¿j(R2) + II^IIl2(R2) < C5

where C5 = C(S, ||í7||c>(r2)) is a constant.

Here a satisfies

(2.13) da = q

and b satisfies

(2.14) d(d + k2 + ikx)b -qb = k(qa - 4dq).

In our case the difficulty in proving an expansion of the form (2.12) is that

we cannot directly use the proof in [S-U, II] to conclude b £ L2(R2) since the

right-hand side of (2.14) is not even a function. A very similar problem was

considered in [Su, II]. An expansion of the form (2.12) was proven there if dq

has delta type singularities on the boundary of simply connected smooth sub-

domains of Q. In our case, we need to prove such an expansion for potentials
having jump type singularities across general smooth subdomain of Si, not just

simply connected ones. However, this difficulty can be dealt with, as stated in

the next proposition. The proof of this result will be given in the next section.

Proposition 2.3. Let q G L°°(R2) with compact support and Sio c R2 be a

bounded domain with smooth boundary. Let q £ Cx(Sio), and q £ C'(R2\Q0) •

Let CgC2 with C-C = 0, -1<<?<0. Then for |fl > Ci||(l + |x|2)^||Loc(K2),
the unique solution of (-A + q)u — 0 as in (2.7) satisfies

(2.15, Wl{x,Q = 1^. + J^,       ,,-„«>,

with

WaWq^ + WHx, k)\\Lim < C6

and C6 = C6(S, H<7||c,(ño) - ll<7llc'(R2\n„)) w a constant.

Given q £ L°°(Si) and the corresponding special solution y/q as in (2.4)

(we extend q = 0 outside SI). We consider the function Tq considered in the
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d approach to the inverse scattering problem by Beals and Coifman [B-C] and

Ablowitz and Nachman [N-A], which is defined by

(2.16) Tq(k) = [ eix'kq(x)(\ + y,q(x,Çk))dx
Jn

where k = (/q , k2) £ R2 , \k\ large and

(2.17) c^k = ^(Jk + ik),
0     1

-1    0

An important fact about Tq is that knowledge of Aq determines Tq uniquely

as a function of k for |Ar| large (see [N-S-U]). The proof of this fact follows

readily by integrating by parts and a result in [S-U, II]. Namely, y/q(x, t;k)

satisfies

(2.18) A^ + 2^-V^ = qyq + q.

Multiplying (2.18) by elx'k , integrating both sides of (2.15) over Si, and using

Green's theorem we get

(2.19)

Tq(k)= [ e'x-kq(x)(l + ¥q(x,¿lk))dx
Ja

sJdíi
eix'k^aT " ¥qlh{eix'k) + 2e'x'k^ • ")<"* dS.

Thus, Tq(k) depends only on the boundary values of yq and of dy/q/du.

Applying Proposition 2.1 of [S-U, II] we have that these boundary values are

determined uniquely by Aq . Therefore Tq is determined uniquely by Aq .

In the proof below we shall show that Tq contains all the information about

the location of the singularity of q as well as the jump of q across the curve

of discontinuity. A very interesting problem is to reconstruct the location of

singularities of the potential and the jump across the surface of discontinuity

from Tq .

Proof of Theorem 2 using Proposition 2.3. Let R = Ci\\(l + \x\2)q\\L<x: where

Ci is as in Proposition 2.2. We assume R > I . We shall show that

(2.20)

By (2.19),

|A:|i(F(?(/c)-^))GL2(|/c|>JR), 0 < 5 < 1.

Tq(k)-q(k)= [eix'kqipq(x,Zk)dx.
Jo.

By Proposition 2.3 we have that

\k\s I i eix'k      {x f &) dx < _L^   / e'x-kq(x)a(x) dx
Un 1*1      Jo.

+ n-j2T7 / \q(x)b(x,k)\dx.
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Thus we get

(\ l/2

f       \k\2s\Tq(k)-q(k)\2dk)      <    f
J\k\>R J JQ.

t(LW(iw"Ä,'ii|*,)'Ä

e'x'kq(x)a(x)dx

1/2

L2(R2)

= h + h-
By using Plancherel's Theorem we obtain

/. - /  e'x'kq(x)a (x)dx
L2(R2

(2^)2||^(x)a(x)||L2(K2

and by the estimate (2.12) on a(x) we get

h < lkllz.»(£î)ll«(^)lli.j(R2) < +00-

Using the estimate on b(x, k) in Proposition 2.3 we obtain

h< IklU-(ii) (/       (77^37)   WH-, k)\\2mçi)dk]     < C\\q\\L«>{íl) < 00
1*1

for some constant C < 00 . Thus, we have proven (2.20). Now let qj, j =1,2,

be given satisfying the hypotheses of Theorem 2. The assumption A9| = Aqi

implies
Tqi(k) = TQ2(k)   for \kI large.

Thus

qi(k)-q2(k)= / eix'kq2y/qidx - \ eix'kqit//qidx
Ja Ja

and by (2.20)
I^Ií(^.W-í2(^))gl2(|^|>jr)

for 0 < s < 1 . This implies that

<7.W-<72(*-)GL2(R2)

and, consequently,

(2.21) qi(x)-q2(x)£Hs(Si)   for all s, 0 < 5 < 1.

To prove that qi  and q2 have the same location of singularity as well as

jump across the discontinuities, it is enough to show that

(2.22) <?, - q2 £ C°(Sl).

This follows from (2.18) and the following trace lemma.

Lemma 2.2. Let h be a piecewise C function defined on Si. Suppose h £
Hs(Sl), s > 1/2. Then h £ C°(Si).

Proof. Suppose h is not in C°(Si). Since h is piecewise C there exists a

disc B c Si and a simple C curve L c B such that when we restrict h on

B, h is C1 on B\L and h has jump type discontinuities on L. We may

assume, without loss of generality that B = {|x| < e} and L is a portion

of the X[-axis in B. Furthermore, by multiplying A by a suitable compactly
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supported, positive function, one may assume further that h itself is supported

in B . Now consider the function:

F:x2^h(-,x2)£L2(Rx¡),        x27¿0,

where /?(•, x2) is defined as a function of xi. By assumption, h g Hs(R2) ,

s > 1/2. Thus by the standard trace theorem, F must be continuous as a map

from RX2, to L2(RX¡). But this is not the case since

lim h(-,x2)yé  lim h(-,x2).   D
x2-*0+ x2->0-

3. Proof of Proposition 2.3

This section is devoted to the proof of Proposition 2.3. We shall show that

the special solutions \pq have expansions of the form (2.12) for \k\ large, where

q has a jump type discontinuity across the boundary of a subdomain Q0 c Si.

The existence of such an expansion is proven in [Su, II] when Sl0 is a simply

connected domain. In the case that Sio is not simply connected some difficulties

arise and the method in [Su, II] cannot be applied directly.

First we claim that, under the hypotheses of Proposition 2.3, the function q

can always be written as a sum of a finite number of other functions that carry

only jump type discontinuity across some simply-connected domains. We state

a simple lemma describing precisely such a decomposition of q .

Lemma 3.1. Let q be a function in L0C(Si) such that q £ Cx(Sl - Q0) and

q G Cx(Slo) • where SloCSl is a subdomain with smooth boundary. Then there

exists a simply-connected domain D¡, and functions qo, q¡, 1 < J< m » such

that

(1) ? = <?o + £,M=,i,-.
(2) q0£Cx(Sl)^

(3) qj\Dj £ Cx(Dj), qj\a\Dj = 0,  l<j<m.

Proof. The proof of this lemma is elementary but cumbersome. We only give

a detailed proof for a special case. The complete proof can be done using

induction.
Let Di, D2, and D3 be simply-connected domains with smooth boundary

such that A nF>2 = 0, Dj ç Si, j = 1, 2, and Z>3 c D2. We consider the

case that Sl0 = Dx U (D2\D3).

Let <7o G Cx(Si) be a C1 extension of ^|r2\n0 to Si, i.e., q0(x) = q(x) for

x G Sl\Si0 . Then let

,  ,      Í <7(x) - <7o(x),    XGF»,,

gi{x) = \0, x£Sl\Di.

Next, let q\ e Cx{Di) be a C1 extension of q{x) - Qo(x)\d2\Di to Di and

set
f q*2 , X£D2,

9iix) = \    2 _
1. 0, x £ D2.

Finally set
,   ,      f Q(x)-q2(x),    X£D3,

^(X) = \0, x£Sl\Di.
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Clearly, qo, Q\, Qi, and #3 satisfy the condition of Lemma 3.1.

Hereafter, we assume q = qo + YÜJL1 Qj where qo, q¡, I < j < rn , are given

by the above lemma. For y/q to have an expansion of the form (2.2), a and b

must satisfy

(3.1) da = q,

(3.2) 8(3 + (k2 + iki))b -qb = k(qa - 4dq).

As we mentioned earlier, the difficulty in obtaining the expansion (2.2) lies in

the equation (3.2). More specifically, the discontinuity of q introduces a delta

type singularity in dq, while the rest of the right-hand side of (3.2) gives no

problem. We divide b into two parts

(3.3) b = bi+b2

where

(3.4) d(d + (k2 + iki ))bx - qbx = kqa - 4kdq0,

m

(3.5) d(d + (k2 + iki))b2 - qb2 = -4kY,d<lj-

7=1

By Lemma 3.1, we note that dqo £ F°° with compact support. (We define

(dqo)(x) = 0 when x G R2\Q.) Then by Lemma 2.1, there exists a solution
bi, satisfying (3.4) and

(3.6) \\bd-,k)\\L2sm<C

where C is independent of k .

To solve (3.5), we divide b2 into two parts again:

(3.7) b2 = b3 + b4

where
m

(3.8) d(d + (k2 + iki))b3 = 4kY,ddj,
7=1

(3.9) d(d + (k2 + iki))bA-qbA = qb3.

The crux of the matter is to solve (3.8). Suppose for the moment that one gets

a solution by in L](R2) for (3.8). Then by Lemma 2.4 again, there will be a

solution ¿>4 for (3.9) and the whole problem is solved.

Let / be a simple closed and smooth curve in R2, and let h £ L°°(l). We

define the distribution S„j £ D'(R2) by

(3.10) 6hJ(cp) = jh(x)cp(x)dx,        V^gC0°°(R2).

Let / be a function on R2 such that / is C1 everywhere except in /, where

/ has a jump type discontinuity across /. We denote by [/]/ its jump, that is

(3.11) [f]i(o)=      ]im      /(*)-       lim       f(x).
from inside / from outside /
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Using these notations we can write

dqj = <W,)-i"(*2))[<7,]/2,öß, +Pj>        I <j <m,

where v(x\), v(x2) denote the Xj and x2 components of v and

(3.12) PJ = 10*»    ^DJ0^2\Dj,        {<
v     ' ;   \o,     x£dDj, -J-

and z = X\ + ix2. Then we split b3 into

m

(3.13) ¿>3 = ¿3 + ][>3>
7 = 1

where
m

(3.14) d(d + (k2 + iki))h = 4kY,Pj,
7 = 1

(3.15) â(ô + (k2 + iki))b{ = 4kS(v(Xt)_iv{X2mj]/2,aDj,        I < j < m.

From (3.12) we conclude p¡ £ L°°(Si), thus we can get a solution for (3.14)

using Lemma 2.4. The existence of a solution for (3.15) follows directly from

the proposition below.

Proposition 3.1. Let I be a simple closed and smooth curve in R2 and let h £

Hx(l). There exists a unique function co in L](R2), -1 < â < 0, satisfying

(3.16) d(d + (ki + ik2))co = ShJ

provided that k = ki + ik2 yé 0. Moreover

(3.17) \\co\\L¡m < (C/I^DIIÄH^IIÄII^).
Proof. The proof of this proposition is similar to the proof of Lemma 5.1 in

[Su, II]. We only give an outline of the proof. Let us recall two lemmas. Let L

be either d or d .

Lemma 3.2 [S-U, II]. Let f £ L2+l(R2), -1 < Ô < 0. Then there exists a

unique solution u £ Fj(R2) satisfying

(3.18) Lu = f

Moreover

(3.19) \\u\\Ljm + ||VM||L2+|(12)   <  C||/||L2+i(R2) ,

where C = C(S) is a constant.

Lemma 3.3 [Su, II]. Let I = {x G R2, |x| = 1}, h£Hx(l), -1 < J < 0. Then
there exists a unique v £ Lj(R2) satisfies

(3.20) Lv = dfj.

Moreover,

(3.21) \\v\\L¡m<C\\f\\L2{l),
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(3-22) \\W\\LHM<1) + ||V*,||L2+|(W>1) < C\\f\\l/2{l)\\f\\l¿f{¡).

We construct

(3.23) co=xI(A + e-2lXm(kz^B).

A computation shows that co solves (3.16) if

(3.24) dA = ShJ,

(3.25) dB = -e2ilm{kz)dA.

By a conformai change of variables, we may assume that / is the unit circle of

R2 . (Note that d and d is invariant under such a change of variables.) Using

Lemma 3.3 we get a unique solution A satisfying

(3.26) \\A\\Ljm + \\VA\\Llimi) < C\\h\\l£(¡)\\h\\${[).

To prove (3.20), we note that (assuming / is the unit circle) dA = á(z/Z)/¡,/+^i ,

where
a A,    z£R2\l,

0,        Z£l,
Ai =

is a function in L|+1(R2). We write

(3.27) B = Bi+B2,

where

(3.28) dBi = -e ' m( z'Srz/z)h,i — ̂ i-e«^i")(z/zMJ'

(3.29) 8B2 = Ai.

By using Lemma 3.3, we get a solution Bx g Fj(R2) and

(3.30) IIäiIIljw^ciiaii^ph^.

Since Ai g Lj+1(R2) is a regular function, one can solve (3.28) by using Lemma

3.3 to get a solution B2 satisfying

(3.31) \\B2\\L]m < C||V^||¿2+](12V).

Combining the estimates (3.26), (3.30), and (3.31) one gets the estimate (3.17).

The existence of the expansion (3.2) is now proven. Uniqueness follows from

Lemma 2.1.   D
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Note added in proof. We have recently generalized Theorems 1 and 2 to a more

general class of singular potentials, see [Su-U, III].
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