Product formulas and convolutions for angular and radial spheroidal wave functions
HTML articles powered by AMS MathViewer
- by William C. Connett, Clemens Markett and Alan L. Schwartz
- Trans. Amer. Math. Soc. 338 (1993), 695-710
- DOI: https://doi.org/10.1090/S0002-9947-1993-1104199-4
- PDF | Request permission
Abstract:
Product formulas for angular spheroidal wave functions on $[0,\pi ]$ and for radial spheroidal wave functions on $[0,\infty )$ are presented, which generalize results for the ultraspherical polynomials and functions as well as for the Mathieu functions. Although these functions cannot be given in closed form, the kernels of the product formulas are represented in an explicit, and surprisingly simple way in terms of Bessel functions so that the exact range of positivity can easily be read off. The formulas are used to introduce two families of convolution structures on $[0,\pi ]$ and $[0,\infty )$, many of which provide new hypergroups. We proceed from the fact that the spheroidal wave functions are eigenfunctions of Sturm-Liouville equations of confluent Heun type and employ a partial differential equation technique based on Riemann’s integration method.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642 F. M. Arscott, Periodic differential equations, Pergamon Press, Oxford, 1964.
- F. M. Arscott, The land beyond Bessel: a survey of higher special functions, Ordinary and partial differential equations (Proc. Sixth Conf., Univ. Dundee, Dundee, 1980) Lecture Notes in Math., vol. 846, Springer, Berlin, 1981, pp. 26–45. MR 610631
- W. C. Connett and A. L. Schwartz, The theory of ultraspherical multipliers, Mem. Amer. Math. Soc. 9 (1977), no. 183, iv+92. MR 435708, DOI 10.1090/memo/0183
- William C. Connett and Alan L. Schwartz, A Hardy-Littlewood maximal inequality for Jacobi type hypergroups, Proc. Amer. Math. Soc. 107 (1989), no. 1, 137–143. MR 961411, DOI 10.1090/S0002-9939-1989-0961411-4
- William C. Connett and Alan L. Schwartz, Analysis of a class of probability preserving measure algebras on compact intervals, Trans. Amer. Math. Soc. 320 (1990), no. 1, 371–393. MR 961620, DOI 10.1090/S0002-9947-1990-0961620-7
- William C. Connett, Clemens Markett, and Alan L. Schwartz, Convolution and hypergroup structures associated with a class of Sturm-Liouville systems, Trans. Amer. Math. Soc. 332 (1992), no. 1, 365–390. MR 1053112, DOI 10.1090/S0002-9947-1992-1053112-6 J. S. Dehesa, New properties of the spheroidal wave equation, Lett. Nuovo Cimento 35 (1982), 25-28. A. Erdélyi et. al, Higher transcendental functions, Vols. I and II, McGraw-Hill, New York, 1955.
- Carson Flammer, Spheroidal wave functions, Stanford University Press, Stanford, California, 1957. MR 0089520
- Mogens Flensted-Jensen and Tom Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245–262. MR 340938, DOI 10.1007/BF02388521
- P. R. Garabedian, Partial differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0162045
- Peter Henrici, A survey of I. N. Vekua’s theory of elliptic partial differential equations with analytic coefficients, Z. Angew. Math. Phys. 8 (1957), 169–203. MR 85427, DOI 10.1007/BF01600500
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
- Mourad E. H. Ismail and Martin E. Muldoon, On the variation with respect to a parameter of zeros of Bessel and $q$-Bessel functions, J. Math. Anal. Appl. 135 (1988), no. 1, 187–207. MR 960813, DOI 10.1016/0022-247X(88)90148-5
- Tom H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp. 1–85. MR 774055
- Eberhard Lanckau, Die Riemannfunktion selbstadjungierter Gleichungen, Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 21 (1979), no. 5, 535–540 (German). MR 551728
- B. M. Levitan, Generalized translation operators and some of their applications, Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., 1964. Translated by Z. Lerman; edited by Don Goelman. MR 0172118
- C. Markett, A new proof of Watson’s product formula for Laguerre polynomials via a Cauchy problem associated with a singular differential operator, SIAM J. Math. Anal. 17 (1986), no. 4, 1010–1032. MR 846404, DOI 10.1137/0517072
- C. Markett, Norm estimates for generalized translation operators associated with a singular differential operator, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), no. 3, 299–313. MR 763467
- Clemens Markett, Product formulas for Bessel, Whittaker, and Jacobi functions via the solution of an associated Cauchy problem, Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983) Internat. Schriftenreihe Numer. Math., vol. 65, Birkhäuser, Basel, 1984, pp. 449–462. MR 820543
- N. W. McLachlan, Theory and Application of Mathieu Functions, Oxford, at the Clarendon Press, 1947. MR 0021158
- Josef Meixner, Integralbeziehungen zwischen Mathieuschen Funktionen, Math. Nachr. 5 (1951), 371–378 (German). MR 43957, DOI 10.1002/mana.19510050605 J. Meixner and F. W. Schäfke, Mathieusche Funktionen und Sphäroid Funktionen, Springer-Verlag, Berlin, 1955.
- Josef Meixner, Friedrich W. Schäfke, and Gerhard Wolf, Mathieu functions and spheroidal functions and their mathematical foundations, Lecture Notes in Mathematics, vol. 837, Springer-Verlag, Berlin-New York, 1980. Further studies. MR 606934
- Willard Miller Jr., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, Vol. 4, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977. With a foreword by Richard Askey. MR 0460751
- P. Moon and D. E. Spencer, Field theory handbook, 2nd ed., Springer-Verlag, Berlin, 1988. Including coordinate systems, differential equations and their solutions. MR 947546
- Marci Perlstadt, Polynomial analogues of prolate spheroidal wave functions and uncertainty, SIAM J. Math. Anal. 17 (1986), no. 1, 240–248. MR 819227, DOI 10.1137/0517022
- Alan Schwartz, The structure of the algebra of Hankel transforms and the algebra of Hankel-Stieltjes transforms, Canadian J. Math. 23 (1971), 236–246. MR 273312, DOI 10.4153/CJM-1971-023-x
- David Slepian, Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev. 25 (1983), no. 3, 379–393. MR 710468, DOI 10.1137/1025078 J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbàtó, Spheroidal wave functions, Wiley, New York, 1956.
- Hans Volkmer, Integralrelationen mit variablen Grenzen für spezielle Funktionen der mathematischen Physik, J. Reine Angew. Math. 319 (1980), 118–132 (German). MR 586118, DOI 10.1515/crll.1980.319.118
- Hans Volkmer, Integralgleichungen für periodische Lösungen Hillscher differentialgleichungen, Analysis 3 (1983), no. 1-4, 189–203 (German, with English summary). MR 756114, DOI 10.1524/anly.1983.3.14.189
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 338 (1993), 695-710
- MSC: Primary 33E10; Secondary 33C80, 34B30
- DOI: https://doi.org/10.1090/S0002-9947-1993-1104199-4
- MathSciNet review: 1104199