Parametrizing smooth compactly supported wavelets
HTML articles powered by AMS MathViewer
- by Raymond O. Wells
- Trans. Amer. Math. Soc. 338 (1993), 919-931
- DOI: https://doi.org/10.1090/S0002-9947-1993-1107031-8
- PDF | Request permission
Abstract:
In this paper a concrete parameter space for the compactly supported wavelet systems of Daubechies is constructed. For wavelet systems with $N$ (generic) nonvanishing coefficients the parameter space is a closed convex set in ${{\mathbf {R}}^{(N - 2)/2}}$, which can be explicitly described in the Fourier transform domain. The moment-free wavelet systems are subsets obtained by the intersection of the parameter space and an affine subspace of ${{\mathbf {R}}^{(N - 2)/2}}$.References
- Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705 A. Haar, Math. Ann. 69 (1910), 336.
- Wayne M. Lawton, Tight frames of compactly supported affine wavelets, J. Math. Phys. 31 (1990), no. 8, 1898–1901. MR 1067632, DOI 10.1063/1.528688 D. Pollen, Parametrization of compactly supported wavelets, Company Report, Aware, Inc., AD890503.1.4, May, 1989.
- Georg Pólya and Gabor Szegő, Aufgaben und Lehrsätze aus der Analysis. Band II: Funktionentheorie, Nullstellen, Polynome Determinanten, Zahlentheorie, Heidelberger Taschenbücher, Band 74, Springer-Verlag, Berlin-New York, 1971 (German). Vierte Auflage. MR 0344041
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 338 (1993), 919-931
- MSC: Primary 42C15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1107031-8
- MathSciNet review: 1107031