On manifolds with nonnegative curvature on totally isotropic 2-planes
HTML articles powered by AMS MathViewer
- by Walter Seaman
- Trans. Amer. Math. Soc. 338 (1993), 843-855
- DOI: https://doi.org/10.1090/S0002-9947-1993-1123458-2
- PDF | Request permission
Abstract:
We prove that a compact orientable $2n$-dimensional Riemannian manifold, with second Betti number nonzero, nonnegative curvature on totally isotropic $2$-planes, and satisfying a positivity-type condition at one point, is necessarily Kähler, with second Betti number $1$. Using the methods of Siu and Yau, we prove that if the positivity condition is satisfied at every point, then the manifold is biholomorphic to complex projective space.References
- Shigetoshi Bando, On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature, J. Differential Geom. 19 (1984), no. 2, 283–297. MR 755227
- James Eells and Luc Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. MR 703510, DOI 10.1090/cbms/050
- Akito Futaki, On compact Kähler manifolds with semipositive bisectional curvature, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 1, 111–125. MR 617868
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR 87176, DOI 10.2307/2372388
- Samuel I. Goldberg and Shoshichi Kobayashi, Holomorphic bisectional curvature, J. Differential Geometry 1 (1967), 225–233. MR 227901
- Shoshichi Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor, Ann. of Math. (2) 74 (1961), 570–574. MR 133086, DOI 10.2307/1970298 S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Wiley-Interscience, New York, 1969.
- Shoshichi Kobayashi and Takushiro Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31–47. MR 316745, DOI 10.1215/kjm/1250523432
- Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227. MR 924677, DOI 10.2307/1971420
- J. Sacks and K. Uhlenbeck, The existence of minimal immersions of $2$-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1–24. MR 604040, DOI 10.2307/1971131
- Walter Seaman, Orthogonally pinched curvature tensors and applications, Math. Scand. 69 (1991), no. 1, 5–14. MR 1143470, DOI 10.7146/math.scand.a-12365
- Yum Tong Siu, Curvature characterization of hyperquadrics, Duke Math. J. 47 (1980), no. 3, 641–654. MR 587172
- Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. MR 577360, DOI 10.1007/BF01390043
- Hung Hsi Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, i–xii and 289–538. MR 1079031
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 338 (1993), 843-855
- MSC: Primary 53C21; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9947-1993-1123458-2
- MathSciNet review: 1123458