A tom Dieck theorem for strong shape theory
Author:
Bernd Günther
Journal:
Trans. Amer. Math. Soc. 338 (1993), 857-870
MSC:
Primary 54C56; Secondary 54D20, 55P55
DOI:
https://doi.org/10.1090/S0002-9947-1993-1160155-1
MathSciNet review:
1160155
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We consider an appropriate class of locally finite closed coverings of spaces, for which the strong shape of the elements of the covering and of their intersections determine the strong shape of the whole space. Conclusions concerning shape dimension and spaces having the strong shape of
-complexes are drawn, and a Leray spectral sequence for strong homology is given.
- [1] Richard A. Alò and Harvey L. Shapiro, Normal topological spaces, Cambridge University Press, New York-London, 1974. Cambridge Tracts in Mathematics, No. 65. MR 0390985
- [2] J. Michael Boardman, Conditionally convergent spectral sequences, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 49–84. MR 1718076, https://doi.org/10.1090/conm/239/03597
- [3] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- [4] Fritz Cathey, Strong shape theory, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 215–238. MR 643532
- [5] F. Cathey and J. Segal, Strong shape theory and resolutions, Topology Appl. 15 (1983), no. 2, 119–130. MR 686090, https://doi.org/10.1016/0166-8641(83)90031-7
- [6] Tammo tom Dieck, Partitions of unity in homotopy theory, Composito Math. 23 (1971), 159–167. MR 0293625
- [7] Jerzy Dydak and Sławomir Nowak, Strong shape for topological spaces, Trans. Amer. Math. Soc. 323 (1991), no. 2, 765–796. MR 986690, https://doi.org/10.1090/S0002-9947-1991-0986690-2
- [8] Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- [9] Bernd Günther, Properties of normal embeddings concerning strong shape theory. I, Tsukuba J. Math. 15 (1991), no. 2, 261–274. MR 1138184, https://doi.org/10.21099/tkbjm/1496161655
- [10] M. Katětov, Extension of locally finite coverings, Colloq. Math. 6 (1958), 145–151 (Russian). MR 0103450
- [11] A. Koyama, S. Mardešić, and T. Watanabe, Spaces which admit AR-resolutions, Proc. Amer. Math. Soc. 102 (1988), no. 3, 749–752. MR 929015, https://doi.org/10.1090/S0002-9939-1988-0929015-6
- [12] Lawrence L. Krajewski, On expanding locally finite collections, Canad. J. Math. 23 (1971), 58–68. MR 0271898, https://doi.org/10.4153/CJM-1971-006-3
- [13] Ju. T. Lisica and S. Mardešić, Coherent prohomotopy and strong shape theory, Glas. Mat. Ser. III 19(39) (1984), no. 2, 335–399 (English, with Serbo-Croatian summary). MR 790021
- [14] S. Mardešić and A. V. Prasolov, Strong homology is not additive, Trans. Amer. Math. Soc. 307 (1988), no. 2, 725–744. MR 940224, https://doi.org/10.1090/S0002-9947-1988-0940224-7
- [15] Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- [16] Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 0232393
- [17] J. C. Smith and L. L. Krajewski, Expandibility and collectionwise normality, Trans. Amer. Math. Soc. 160 (1971), 437–451. MR 0284966, https://doi.org/10.1090/S0002-9947-1971-0284966-5
- [18] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
Retrieve articles in Transactions of the American Mathematical Society with MSC: 54C56, 54D20, 55P55
Retrieve articles in all journals with MSC: 54C56, 54D20, 55P55
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1993-1160155-1
Keywords:
Locally finite closed coverings,
expansion of coverings,
strong shape,
strong homology,
shape dimension,
tom Dieck Theorem
Article copyright:
© Copyright 1993
American Mathematical Society


