Hyponormal Toeplitz operators and extremal problems of Hardy spaces
HTML articles powered by AMS MathViewer
- by Takahiko Nakazi and Katsutoshi Takahashi
- Trans. Amer. Math. Soc. 338 (1993), 753-767
- DOI: https://doi.org/10.1090/S0002-9947-1993-1162103-7
- PDF | Request permission
Abstract:
The symbols of hyponormal Toeplitz operators are completely described and those are also studied, being related with the extremal problems of Hardy spaces. Moreover, we discuss Halmos’s question about a subnormal Toeplitz operator when the self-commutator is finite rank.References
- M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), no. 3, 597–604. MR 428097
- Ichiro Amemiya, Takashi Ito, and Tin Kin Wong, On quasinormal Toeplitz operators, Proc. Amer. Math. Soc. 50 (1975), 254–258. MR 410451, DOI 10.1090/S0002-9939-1975-0410451-2
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- Kevin F. Clancey and Bernard B. Morrel, The essential spectrum of some Toeplitz operators, Proc. Amer. Math. Soc. 44 (1974), 129–134. MR 341162, DOI 10.1090/S0002-9939-1974-0341162-9
- Carl C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809–812. MR 947663, DOI 10.1090/S0002-9939-1988-0947663-4
- Carl C. Cowen and John J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216–220. MR 749683
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- Takashi Itô and Tin Kin Wong, Subnormality and quasinormality of Toeplitz operators, Proc. Amer. Math. Soc. 34 (1972), 157–164. MR 303334, DOI 10.1090/S0002-9939-1972-0303334-7
- Takahiko Nakazi, Intersection of two invariant subspaces, Canad. Math. Bull. 30 (1987), no. 2, 129–133. MR 889529, DOI 10.4153/CMB-1987-019-6
- Takahiko Nakazi, Absolute values of Toeplitz operators and Hankel operators, Canad. Math. Bull. 34 (1991), no. 2, 249–253. MR 1113305, DOI 10.4153/CMB-1991-040-1
- J. Neuwirth and D. J. Newman, Positive $H^{1/2}$ functions are constants, Proc. Amer. Math. Soc. 18 (1967), 958. MR 213576, DOI 10.1090/S0002-9939-1967-0213576-5
- S. C. Power, Hankel operators on Hilbert space, Research Notes in Mathematics, vol. 64, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 666699
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 338 (1993), 753-767
- MSC: Primary 47B35; Secondary 30D55, 47B20
- DOI: https://doi.org/10.1090/S0002-9947-1993-1162103-7
- MathSciNet review: 1162103