An inverse boundary value problem for Schrödinger operators with vector potentials
HTML articles powered by AMS MathViewer
- by Zi Qi Sun PDF
- Trans. Amer. Math. Soc. 338 (1993), 953-969 Request permission
Abstract:
We consider the Schrödinger operator for a magnetic potential $\vec A$ and an electric potential $q$, which are supported in a bounded domain in ${\mathbb {R}^n}$ with $n \geq 3$. We prove that knowledge of the Dirichlet to Neumann map associated to the Schrödinger operator determines the magnetic field $\operatorname {rot}(\vec A)$ and the electric potential $q$ simultaneously, provided $\operatorname {rot}(\vec A)$ is small in the ${L^\infty }$ topology.References
- Giovanni Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal. 27 (1988), no. 1-3, 153–172. MR 922775, DOI 10.1080/00036818808839730
- Alberto-P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980) Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65–73. MR 590275
- Sagun Chanillo, A problem in electrical prospection and an $n$-dimensional Borg-Levinson theorem, Proc. Amer. Math. Soc. 108 (1990), no. 3, 761–767. MR 998731, DOI 10.1090/S0002-9939-1990-0998731-1
- Victor Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations 92 (1991), no. 2, 305–316. MR 1120907, DOI 10.1016/0022-0396(91)90051-A
- Robert Kohn and Michael Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math. 37 (1984), no. 3, 289–298. MR 739921, DOI 10.1002/cpa.3160370302
- R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements. II. Interior results, Comm. Pure Appl. Math. 38 (1985), no. 5, 643–667. MR 803253, DOI 10.1002/cpa.3160380513 R. B. Lavine and A. Nachman, Global uniqueness in inverse problems with singular potentials, in preparation.
- Adrian I. Nachman, Reconstructions from boundary measurements, Ann. of Math. (2) 128 (1988), no. 3, 531–576. MR 970610, DOI 10.2307/1971435
- Adrian Nachman, John Sylvester, and Gunther Uhlmann, An $n$-dimensional Borg-Levinson theorem, Comm. Math. Phys. 115 (1988), no. 4, 595–605. MR 933457, DOI 10.1007/BF01224129
- R. G. Novikov and G. M. Khenkin, The $\overline \partial$-equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 93–152, 255 (Russian). MR 896879
- A. G. Ramm, Recovery of the potential from fixed-energy scattering data, Inverse Problems 4 (1988), no. 3, 877–886. MR 965652, DOI 10.1088/0266-5611/4/3/020
- John Sylvester and Gunther Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2) 125 (1987), no. 1, 153–169. MR 873380, DOI 10.2307/1971291
- John Sylvester and Gunther Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math. 39 (1986), no. 1, 91–112. MR 820341, DOI 10.1002/cpa.3160390106
- Zi Qi Sun, The inverse conductivity problem in two dimensions, J. Differential Equations 87 (1990), no. 2, 227–255. MR 1072901, DOI 10.1016/0022-0396(90)90002-7
- Zi Qi Sun, An inverse boundary value problem for the Schrödinger operator with vector potentials in two dimensions, Comm. Partial Differential Equations 18 (1993), no. 1-2, 83–124. MR 1211726, DOI 10.1080/03605309308820922
- Zi Qi Sun and Gunther Uhlmann, Generic uniqueness for an inverse boundary value problem, Duke Math. J. 62 (1991), no. 1, 131–155. MR 1104326, DOI 10.1215/S0012-7094-91-06206-X
- Zi Qi Sun and Gunther Uhlmann, Inverse scattering for singular potentials in two dimensions, Trans. Amer. Math. Soc. 338 (1993), no. 1, 363–374. MR 1126214, DOI 10.1090/S0002-9947-1993-1126214-4
- Ricardo Weder, Global uniqueness at fixed energy in multidimensional inverse scattering theory, Inverse Problems 7 (1991), no. 6, 927–938. MR 1140323, DOI 10.1088/0266-5611/7/6/012
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 338 (1993), 953-969
- MSC: Primary 35J10; Secondary 35R30, 47N50, 81Q05, 81V10
- DOI: https://doi.org/10.1090/S0002-9947-1993-1179400-1
- MathSciNet review: 1179400