## Irredundant sets in Boolean algebras

HTML articles powered by AMS MathViewer

- by Stevo Todorčević PDF
- Trans. Amer. Math. Soc.
**339**(1993), 35-44 Request permission

## Abstract:

It is shown that every uncountable Boolean algebra $A$ contains an uncountable subset $I$ such that no $a$ of $I$ is in the subalgebra generated by $I\backslash \{ a\}$ using an additional axiom of set theory. It is also shown that a use of some such axiom is necessary.## References

- Keith J. Devlin,
*Some weak versions of large cardinal axioms*, Ann. Math. Logic**5**(1972/73), 291–325. MR**363906**, DOI 10.1016/0003-4843(73)90010-7 - Eric K. van Douwen, J. Donald Monk, and Matatyahu Rubin,
*Some questions about Boolean algebras*, Algebra Universalis**11**(1980), no. 2, 220–243. MR**588216**, DOI 10.1007/BF02483101 - G. Gruenhage,
*On the existence of metrizable or Sorgenfrey subspaces*, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 223–230. MR**952608** - Lutz Heindorf,
*A note on irredundant sets*, Algebra Universalis**26**(1989), no. 2, 216–221. MR**999231**, DOI 10.1007/BF01236868 - J. Donald Monk,
*Cardinal functions on Boolean algebras*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1990. MR**1077622**, DOI 10.1007/978-3-0348-6381-0 - Matatyahu Rubin,
*A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness*, Trans. Amer. Math. Soc.**278**(1983), no. 1, 65–89. MR**697061**, DOI 10.1090/S0002-9947-1983-0697061-6 - Stevo Todorčević,
*A note on the proper forcing axiom*, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 209–218. MR**763902**, DOI 10.1090/conm/031/763902 - Stevo Todorčević,
*Directed sets and cofinal types*, Trans. Amer. Math. Soc.**290**(1985), no. 2, 711–723. MR**792822**, DOI 10.1090/S0002-9947-1985-0792822-9
—, - Stevo Todorčević,
*Free sequences*, Topology Appl.**35**(1990), no. 2-3, 235–238. MR**1058803**, DOI 10.1016/0166-8641(90)90108-E

*Partition problems in topology*, Amer. Math. Soc., Providence, R.I.,, 1988.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**339**(1993), 35-44 - MSC: Primary 03E50; Secondary 06E05
- DOI: https://doi.org/10.1090/S0002-9947-1993-1080736-3
- MathSciNet review: 1080736