Irredundant sets in Boolean algebras
HTML articles powered by AMS MathViewer
- by Stevo Todorčević
- Trans. Amer. Math. Soc. 339 (1993), 35-44
- DOI: https://doi.org/10.1090/S0002-9947-1993-1080736-3
- PDF | Request permission
Abstract:
It is shown that every uncountable Boolean algebra $A$ contains an uncountable subset $I$ such that no $a$ of $I$ is in the subalgebra generated by $I\backslash \{ a\}$ using an additional axiom of set theory. It is also shown that a use of some such axiom is necessary.References
- Keith J. Devlin, Some weak versions of large cardinal axioms, Ann. Math. Logic 5 (1972/73), 291–325. MR 363906, DOI 10.1016/0003-4843(73)90010-7
- Eric K. van Douwen, J. Donald Monk, and Matatyahu Rubin, Some questions about Boolean algebras, Algebra Universalis 11 (1980), no. 2, 220–243. MR 588216, DOI 10.1007/BF02483101
- G. Gruenhage, On the existence of metrizable or Sorgenfrey subspaces, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 223–230. MR 952608
- Lutz Heindorf, A note on irredundant sets, Algebra Universalis 26 (1989), no. 2, 216–221. MR 999231, DOI 10.1007/BF01236868
- J. Donald Monk, Cardinal functions on Boolean algebras, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1990. MR 1077622, DOI 10.1007/978-3-0348-6381-0
- Matatyahu Rubin, A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness, Trans. Amer. Math. Soc. 278 (1983), no. 1, 65–89. MR 697061, DOI 10.1090/S0002-9947-1983-0697061-6
- Stevo Todorčević, A note on the proper forcing axiom, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 209–218. MR 763902, DOI 10.1090/conm/031/763902
- Stevo Todorčević, Directed sets and cofinal types, Trans. Amer. Math. Soc. 290 (1985), no. 2, 711–723. MR 792822, DOI 10.1090/S0002-9947-1985-0792822-9 —, Partition problems in topology, Amer. Math. Soc., Providence, R.I.,, 1988.
- Stevo Todorčević, Free sequences, Topology Appl. 35 (1990), no. 2-3, 235–238. MR 1058803, DOI 10.1016/0166-8641(90)90108-E
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 35-44
- MSC: Primary 03E50; Secondary 06E05
- DOI: https://doi.org/10.1090/S0002-9947-1993-1080736-3
- MathSciNet review: 1080736