Cayley-Bacharach schemes and their canonical modules
HTML articles powered by AMS MathViewer
- by Anthony V. Geramita, Martin Kreuzer and Lorenzo Robbiano
- Trans. Amer. Math. Soc. 339 (1993), 163-189
- DOI: https://doi.org/10.1090/S0002-9947-1993-1102886-5
- PDF | Request permission
Abstract:
A set of $s$ points in ${\mathbb {P}^d}$ is called a Cayley-Bacharach scheme (${\text {CB}}$-scheme), if every subset of $s - 1$ points has the same Hilbert function. We investigate the consequences of this "weak uniformity." The main result characterizes ${\text {CB}}$-schemes in terms of the structure of the canonical module of their projective coordinate ring. From this we get that the Hilbert function of a ${\text {CB}}$-scheme $X$ has to satisfy growth conditions which are only slightly weaker than the ones given by Harris and Eisenbud for points with the uniform position property. We also characterize ${\text {CB}}$-schemes in terms of the conductor of the projective coordinate ring in its integral closure and in terms of the forms of minimal degree passing through a linked set of points. Applications include efficient algorithms for checking whether a given set of points is a ${\text {CB}}$-scheme, results about generic hyperplane sections of arithmetically Cohen-Macaulay curves and inequalities for the Hilbert functions of Cohen-Macaulay domains.References
- Winfried Bruns and Udo Vetter, Determinantal rings, Lecture Notes in Mathematics, vol. 1327, Springer-Verlag, Berlin, 1988. MR 953963, DOI 10.1007/BFb0080378 G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica, Rend. Circ. Mat. Palermo 7 (1893), 89-110.
- Luca Chiantini and Ferruccio Orecchia, Plane sections of arithmetically normal curves in $\textbf {P}^3$, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 32â42. MR 1023388, DOI 10.1007/BFb0085922
- Edward D. Davis, On a theorem of Beniamino Segre, The curves seminar at Queenâs, Vol. III (Kingston, Ont., 1983) Queenâs Papers in Pure and Appl. Math., vol. 67, Queenâs Univ., Kingston, ON, 1984, pp. Exp. No. D, 10. MR 783095
- Edward D. Davis, Anthony V. Geramita, and Paolo Maroscia, Perfect homogeneous ideals: Dubreilâs theorems revisited, Bull. Sci. Math. (2) 108 (1984), no. 2, 143â185 (English, with French summary). MR 769926
- E. D. Davis, A. V. Geramita, and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93 (1985), no. 4, 593â597. MR 776185, DOI 10.1090/S0002-9939-1985-0776185-6 W. Gröbner, Ăber irreduzible Ideale in kommutativen Ringen, Math. Ann. 110 (1934), 197-222.
- A. V. Geramita and J. C. Migliore, Hyperplane sections of a smooth curve in $\textbf {P}^3$, Comm. Algebra 17 (1989), no. 12, 3129â3164. MR 1030613, DOI 10.1080/00927878908823898
- A. V. Geramita, P. Maroscia, and L. G. Roberts, The Hilbert function of a reduced $k$-algebra, J. London Math. Soc. (2) 28 (1983), no. 3, 443â452. MR 724713, DOI 10.1112/jlms/s2-28.3.443 A. Giovini and G. Niesi, CoCoA userâs manual, v. 099b, Dipartimento di Matematica, UniversitĂ di Genova, Genova, 1989.
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179â213. MR 494707, DOI 10.2969/jmsj/03020179
- Joe Harris, The genus of space curves, Math. Ann. 249 (1980), no. 3, 191â204. MR 579101, DOI 10.1007/BF01363895
- Joe Harris, Curves in projective space, SĂ©minaire de MathĂ©matiques SupĂ©rieures [Seminar on Higher Mathematics], vol. 85, Presses de lâUniversitĂ© de MontrĂ©al, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427
- Martin Kreuzer, On $0$-dimensional complete intersections, The Curves Seminar at Queenâs, Vol. VII (Kingston, ON, 1990) Queenâs Papers in Pure and Appl. Math., vol. 85, Queenâs Univ., Kingston, ON, 1990, pp. Exp. No. J, 18. MR 1089903
- Martin Kreuzer, VektorbĂŒndel und der Satz von Cayley-Bacharach, Regensburger Mathematische Schriften [Regensburg Mathematical Publications], vol. 21, UniversitĂ€t Regensburg, Fachbereich Mathematik, Regensburg, 1989 (German). Dissertation, UniversitĂ€t Regensburg, Regensburg, 1989. MR 1027141
- Ernst Kunz and Rolf Waldi, Regular differential forms, Contemporary Mathematics, vol. 79, American Mathematical Society, Providence, RI, 1988. MR 971502, DOI 10.1090/conm/079
- Ferruccio Orecchia, Points in generic position and conductors of curves with ordinary singularities, J. London Math. Soc. (2) 24 (1981), no. 1, 85â96. MR 623673, DOI 10.1112/jlms/s2-24.1.85
- JĂŒrgen Rathmann, The uniform position principle for curves in characteristic $p$, Math. Ann. 276 (1987), no. 4, 565â579. MR 879536, DOI 10.1007/BF01456986
- Lorenzo Robbiano, Introduction to the theory of Gröbner bases, The Curves Seminar at Queenâs, Vol. V (Kingston, ON, 1987â1988) Queenâs Papers in Pure and Appl. Math., vol. 80, Queenâs Univ., Kingston, ON, 1988, pp. Exp. No. B, 29. MR 973648 A. Sodhi, On the conductor of points in ${\mathbb {P}^n}$, Dissertation, Queenâs University, Kingston, 1987.
- Richard P. Stanley, On the Hilbert function of a graded Cohen-Macaulay domain, J. Pure Appl. Algebra 73 (1991), no. 3, 307â314. MR 1124790, DOI 10.1016/0022-4049(91)90034-Y
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 163-189
- MSC: Primary 14M05; Secondary 13D40
- DOI: https://doi.org/10.1090/S0002-9947-1993-1102886-5
- MathSciNet review: 1102886