Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Cayley-Bacharach schemes and their canonical modules

Authors: Anthony V. Geramita, Martin Kreuzer and Lorenzo Robbiano
Journal: Trans. Amer. Math. Soc. 339 (1993), 163-189
MSC: Primary 14M05; Secondary 13D40
MathSciNet review: 1102886
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A set of $s$ points in ${\mathbb {P}^d}$ is called a Cayley-Bacharach scheme (${\text {CB}}$-scheme), if every subset of $s - 1$ points has the same Hilbert function. We investigate the consequences of this "weak uniformity." The main result characterizes ${\text {CB}}$-schemes in terms of the structure of the canonical module of their projective coordinate ring. From this we get that the Hilbert function of a ${\text {CB}}$-scheme $X$ has to satisfy growth conditions which are only slightly weaker than the ones given by Harris and Eisenbud for points with the uniform position property. We also characterize ${\text {CB}}$-schemes in terms of the conductor of the projective coordinate ring in its integral closure and in terms of the forms of minimal degree passing through a linked set of points. Applications include efficient algorithms for checking whether a given set of points is a ${\text {CB}}$-scheme, results about generic hyperplane sections of arithmetically Cohen-Macaulay curves and inequalities for the Hilbert functions of Cohen-Macaulay domains.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14M05, 13D40

Retrieve articles in all journals with MSC: 14M05, 13D40

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society