$2$-weights for unitary groups
HTML articles powered by AMS MathViewer
- by Jian Bei An
- Trans. Amer. Math. Soc. 339 (1993), 251-278
- DOI: https://doi.org/10.1090/S0002-9947-1993-1108609-8
- PDF | Request permission
Abstract:
This paper gives a description of the local structures of $2$-radical subgroups in a finite unitary group and proves Alperin’s weight conjecture for finite unitary groups when the characteristic of modular representation is even.References
- J. L. Alperin, Large Abelian subgroups of $p$-groups, Trans. Amer. Math. Soc. 117 (1965), 10–20. MR 170946, DOI 10.1090/S0002-9947-1965-0170946-4
- J. L. Alperin, Weights for finite groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 369–379. MR 933373, DOI 10.1090/pspum/047.1/933373
- J. L. Alperin and P. Fong, Weights for symmetric and general linear groups, J. Algebra 131 (1990), no. 1, 2–22. MR 1054996, DOI 10.1016/0021-8693(90)90163-I
- Jian Bei An, $2$-weights for general linear groups, J. Algebra 149 (1992), no. 2, 500–527. MR 1172443, DOI 10.1016/0021-8693(92)90030-P
- Jian Bei An, Weights for classical groups, Trans. Amer. Math. Soc. 342 (1994), no. 1, 1–42. MR 1136543, DOI 10.1090/S0002-9947-1994-1136543-7
- Michel Broué, Les $l$-blocs des groups $\textrm {GL}(n,q)$ et $\textrm {U}(n,q^2)$ et leurs structures locales, Astérisque 133-134 (1986), 159–188 (French). Seminar Bourbaki, Vol. 1984/85. MR 837219
- Roger Carter and Paul Fong, The Sylow $2$-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151. MR 166271, DOI 10.1016/0021-8693(64)90030-4
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Jean Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (French). Seconde édition, revue et corrigée. MR 0158011
- Leonard Eugene Dickson, Binary Modular Groups and their Invariants, Amer. J. Math. 33 (1911), no. 1-4, 175–192. MR 1507890, DOI 10.2307/2369991
- Paul Fong and Bhama Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), no. 1, 109–153. MR 671655, DOI 10.1007/BF01389188 S. P. Glasby, Extensions of extraspecial $2$-groups by orthogonal groups, J. Austral. Math. Soc. (to appear). —, An extension of a group of order ${2^{2n + 2}}$ by the symplectic group $\operatorname {Sp}(2n,2)$, J. Austral. Math. Soc. (to appear).
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903 R. L. Greiss, Automorphisms of extra special groups and nonvanishing degree $2$ cohomology, Pacific J. Math. 48 (1973), 402-422.
- I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594–635. MR 332945, DOI 10.2307/2373731
- Martin W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. (3) 50 (1985), no. 3, 426–446. MR 779398, DOI 10.1112/plms/s3-50.3.426
- David L. Winter, The automorphism group of an extraspecial $p$-group, Rocky Mountain J. Math. 2 (1972), no. 2, 159–168. MR 297859, DOI 10.1216/RMJ-1972-2-2-159
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 251-278
- MSC: Primary 20C20; Secondary 20G40
- DOI: https://doi.org/10.1090/S0002-9947-1993-1108609-8
- MathSciNet review: 1108609