## $2$-weights for unitary groups

HTML articles powered by AMS MathViewer

- by Jian Bei An PDF
- Trans. Amer. Math. Soc.
**339**(1993), 251-278 Request permission

## Abstract:

This paper gives a description of the local structures of $2$-radical subgroups in a finite unitary group and proves Alperin’s weight conjecture for finite unitary groups when the characteristic of modular representation is even.## References

- J. L. Alperin,
*Large Abelian subgroups of $p$-groups*, Trans. Amer. Math. Soc.**117**(1965), 10–20. MR**170946**, DOI 10.1090/S0002-9947-1965-0170946-4 - J. L. Alperin,
*Weights for finite groups*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 369–379. MR**933373** - J. L. Alperin and P. Fong,
*Weights for symmetric and general linear groups*, J. Algebra**131**(1990), no. 1, 2–22. MR**1054996**, DOI 10.1016/0021-8693(90)90163-I - Jian Bei An,
*$2$-weights for general linear groups*, J. Algebra**149**(1992), no. 2, 500–527. MR**1172443**, DOI 10.1016/0021-8693(92)90030-P - Jian Bei An,
*Weights for classical groups*, Trans. Amer. Math. Soc.**342**(1994), no. 1, 1–42. MR**1136543**, DOI 10.1090/S0002-9947-1994-1136543-7 - Michel Broué,
*Les $l$-blocs des groups $\textrm {GL}(n,q)$ et $\textrm {U}(n,q^2)$ et leurs structures locales*, Astérisque**133-134**(1986), 159–188 (French). Seminar Bourbaki, Vol. 1984/85. MR**837219** - Roger Carter and Paul Fong,
*The Sylow $2$-subgroups of the finite classical groups*, J. Algebra**1**(1964), 139–151. MR**166271**, DOI 10.1016/0021-8693(64)90030-4 - Charles W. Curtis and Irving Reiner,
*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0144979** - Jean Dieudonné,
*La géométrie des groupes classiques*, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (French). Seconde édition, revue et corrigée. MR**0158011** - Leonard Eugene Dickson,
*Binary Modular Groups and their Invariants*, Amer. J. Math.**33**(1911), no. 1-4, 175–192. MR**1507890**, DOI 10.2307/2369991 - Paul Fong and Bhama Srinivasan,
*The blocks of finite general linear and unitary groups*, Invent. Math.**69**(1982), no. 1, 109–153. MR**671655**, DOI 10.1007/BF01389188
S. P. Glasby, - Daniel Gorenstein,
*Finite groups*, Harper & Row, Publishers, New York-London, 1968. MR**0231903**
R. L. Greiss, - I. M. Isaacs,
*Characters of solvable and symplectic groups*, Amer. J. Math.**95**(1973), 594–635. MR**332945**, DOI 10.2307/2373731 - Martin W. Liebeck,
*On the orders of maximal subgroups of the finite classical groups*, Proc. London Math. Soc. (3)**50**(1985), no. 3, 426–446. MR**779398**, DOI 10.1112/plms/s3-50.3.426 - David L. Winter,
*The automorphism group of an extraspecial $p$-group*, Rocky Mountain J. Math.**2**(1972), no. 2, 159–168. MR**297859**, DOI 10.1216/RMJ-1972-2-2-159

*Extensions of extraspecial*$2$-

*groups by orthogonal groups*, J. Austral. Math. Soc. (to appear). —,

*An extension of a group of order*${2^{2n + 2}}$

*by the symplectic group*$\operatorname {Sp}(2n,2)$, J. Austral. Math. Soc. (to appear).

*Automorphisms of extra special groups and nonvanishing degree*$2$

*cohomology*, Pacific J. Math.

**48**(1973), 402-422.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**339**(1993), 251-278 - MSC: Primary 20C20; Secondary 20G40
- DOI: https://doi.org/10.1090/S0002-9947-1993-1108609-8
- MathSciNet review: 1108609