Probing L-S category with maps
HTML articles powered by AMS MathViewer
- by Barry Jessup
- Trans. Amer. Math. Soc. 339 (1993), 351-360
- DOI: https://doi.org/10.1090/S0002-9947-1993-1112375-X
- PDF | Request permission
Abstract:
For any map $X\xrightarrow {f}Y$, we introduce two new homotopy invariants, ${\text {dcat}}\;f$ and ${\text {rcat}}\;f$. The classical category ${\text {cat}}\;f$ is a lower bound for both, while ${\text {dcat}}\;f \leq {\text {cat}}\;X$ and ${\text {rcat}}\;f \leq {\text {cat}}\;Y$. When $Y$ is an Eilenberg-Mac Lane space, $f$ represents a cohomology class and ${\text {dcat}}\;f$ often gives a good estimate for ${\text {cat}}\;X$. We prove that if $\Omega \in {H^n}(M;\mathbb {Z})$ is the fundamental class of a compact, simply connected $n$-manifold, then ${\text {dcat}}\;\Omega = {\text {cat}}\;M$. Similarly, when $X$ is sphere, then $f$ is a homotopy class and while ${\text {cat}}\;f = 1$, ${\text {rcat}}\;f$ can be a good approximation to ${\text {cat}}\;Y$. We show that if $\alpha \in {\pi _2}(\mathbb {C}{P^n})$ is nonzero, then ${\text {rcat}}\;\alpha = n$. Rational analogues are introduced and we prove that for $u \in {H^\ast }(X;\mathbb {Q})$, ${\text {dcat}_0}\;u = 1 \Leftrightarrow {u^2} = 0$ and $u$ is spherical.References
- I. Berstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1961/62), 265–279. MR 139168, DOI 10.4064/fm-50-3-265-279
- A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
- Yves Félix and Stephen Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1–38. MR 664027, DOI 10.1090/S0002-9947-1982-0664027-0
- Ralph H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42 (1941), 333–370. MR 4108, DOI 10.2307/1968905
- W. J. Gilbert, Some examples for weak category and conilpotency, Illinois J. Math. 12 (1968), 421–432. MR 231375
- Michael Ginsburg, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 77 (1963), 538–551. MR 149489, DOI 10.2307/1970129
- S. Halperin, Lectures on minimal models, Mém. Soc. Math. France (N.S.) 9-10 (1983), 261. MR 736299
- Stephen Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173–199. MR 461508, DOI 10.1090/S0002-9947-1977-0461508-8
- S. Halperin and J.-M. Lemaire, Notions of category in differential algebra, Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986) Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 138–154. MR 952577, DOI 10.1007/BFb0077800
- Jean-Michel Lemaire and François Sigrist, Sur les invariants d’homotopie rationnelle liés à la L. S. catégorie, Comment. Math. Helv. 56 (1981), no. 1, 103–122 (French). MR 615618, DOI 10.1007/BF02566201
- Graham Hilton Toomer, Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z. 138 (1974), 123–143. MR 356037, DOI 10.1007/BF01214229
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 351-360
- MSC: Primary 55M30; Secondary 55P60, 55P62
- DOI: https://doi.org/10.1090/S0002-9947-1993-1112375-X
- MathSciNet review: 1112375