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LOCALIZING WITH RESPECT TO SELF-MAPS OF THE CIRCLE

CARLES CASACUBERTA AND GEORG PESCHKE

Abstract. We describe a general procedure to construct idempotent functors

on the pointed homotopy category of connected CW-complexes, some of which

extend /"-localization of nilpotent spaces, at a set of primes P. We focus our

attention on one such functor, whose local objects are CW-complexes X for

which the pth power map on the loop space QX is a self-homotopy equiv-

alence if p & P. We study its algebraic properties, its behaviour on certain

spaces, and its relation with other functors such as Bousfield's homology local-

ization, Bousfield-Kan completion, and Quillen's plus-construction.

0. INTRODUCTION

Localization methods at a set of primes P have been broadly used in group
theory and homotopy theory during the last two decades. These methods have

been applied primarily in the category of nilpotent groups and in the pointed

homotopy category of nilpotent CW-complexes; see [1, 7, 16].

If one seeks to extend F-localization to arbitrary CW-complexes, then there

is in fact more than one choice available. Among the various choices, the

ones which have been described in the literature are contained in the work of

Bousfield [4, 5] and Bousfield-Kan [7].
In this paper, we study extensions of the F-localization of nilpotent CW-

complexes to all CW-complexes from two points of view:

( 1 ) We consider the family of all possible such extensions and provide a uniform

construction of some of them, namely of those which are spliceable, in the sense

explained below.

(2) Among such spliceable functors, there is one which is most intimately tied to

F-localization of groups in the sense of [16, 22]. We explain its basic properties.

To explain (1), we observe that the functors in our discussion are interrelated

by natural transformations. In this way they form a partially ordered system

containing a unique maximal and a unique minimal element. The minimal

element of this system turns out to be Bousfield's //»( ; Z/>)-localization [4],

meaning that H*( ; Zp)-localization factors uniquely through every extension

of F-localization of nilpotent spaces to all spaces.
The H*( ; Z/>)-localization functor is characterized by the class of maps

which become homotopy equivalences after localization, namely all maps which
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induce an isomorphism in singular homology with Z/> coefficients. The func-

tors which we describe render invertible all maps inducing at the fundamental

group a homomorphism from a specially selected class and an isomorphism in

homology with certain twisted coefficients. The construction of these functors
involves two processes. Firstly, homology localization in the sense of Bousfield

in categories of the following type: an object consists of a space together with

a twisted coefficient system, and a morphism is a map compatible with the co-

efficient systems; see §5. Secondly, "splicing" such functors in order to obtain

idempotent functors on the pointed homotopy category of CW-complexes; see

§6.
While splicing affords a uniform point of view of P-localization through the

eyes of homology, we emphasize that some of our functors have independent de-

scriptions and constructions which are more direct and geometrically inspired.
One nontrivial result seen with the aid of such a double description of a localiz-
ing functor is that homology and cohomology equivalences with certain P-local

twisted coefficients coincide (Corollary 7.3).
We now turn to the special P-localizing functor A —> XF mentioned in (2)

above. Recall that a group G is called P-local if for all primes n £ P the

power function x i-> x" is a bijection—or, equivalently, a homotopy equiva-

lence, regarding G as a discrete space. The distinguishing feature of our special

localizing functor is that its local spaces have loop spaces on which the power

function co (-»• co" , n $ P, is a homotopy equivalence; i.e. P-local spaces are

classifying spaces of (Aqq-associative) P-local //-groups. They are also char-

acterized by the property that 7ii (A) isa P-local group acting P-locally on the
higher homotopy groups n,(X), i.e. each element 1-hx-l-\-xn~x eZ[nx(X)],

n £ P,  acts as an isomorphism on n¡(X),   i>2; cf. [19].

To deal with this kind of actions, we use the localization P[G] of the integral

group ring ZC7 of a P-local group G with respect to the elements 1 + x H-h
x"~x, x e G, n £ P, in the ring-theoretical sense [13]. Abelian groups on

which G acts P-locally are then identified as P[G]-modules. This is done in

§2, where we also establish some foundational facts concerning P[C7]-modules.

In §3, we provide an explicit construction of the functor A -+ XP in count-

ably many steps, and proceed to collect its basic properties. In §4, we prove that

this functor extends P-localization of nilpotent spaces. Finally, in §8, we dis-

cuss its interrelation with other extensions of P-localization of nilpotent spaces

and determine its effect on special spaces and maps, in particular on a wedge

of circles.

1. Categorical preliminaries

In order to explain the interrelation between various localizing functors

known from the literature and new ones obtained in this paper, we invoke

the general facts concerning localizing functors and orthogonal pairs described

in [11, 12]. For the convenience of the reader, we collect here what is needed.

Let f denote a given category.

Definition 1.1. An object A and a morphism f : A —> B in W are said to be

orthogonal if the function /* : Mor (B, X) -> Mor (A, X) is bijective.

For a class of morphisms JZ, JZ1- denotes the class of objects which are

orthogonal to each / e JZ. Similarly, for a class of objects cf,   cfL denotes
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the class of morphisms which are orthogonal to each object X etf.

Definition 1.2. An orthogonal pair L9", 3) in f consists of a class of mor-

phisms Z? and a class of objects 3 such that 31 = Z? and ZZ?1 = 3.

The operation X satisfies XXX = X, implying that (JZ11-, JZ1) and

(cf1, (f1-1) axe orthogonal pairs for every class of morphisms JZ, resp. of
objects cf, in fê.

Localizations of ^ are described by means of idempotent monads [1], and

every idempotent monad (E, n) determines an orthogonal pair (ZT, 3) by

5? = {fi : A -» B | Efi : EA = EB},    3 = {X \ nx : X <= EX}.

The construction in [12] "recovers" for many orthogonal pairs (ZT ,3) its

associated idempotent monad (E, n), provided it exists. In this situation, we

refer to morphisms in Zy as E-equivalences and to objects in 3 as E-local

objects.
Let E' be a localizing functor on W, a subcategory of W, and let (ZT', 3')

denote the orthogonal pair associated with E'. Possible extensions of E' over

f are identified by orthogonal pairs (Z?, 3) of & extending (ZT' ,3'), i.e.

such that ZT" ç ZT and 3' ç 3. Orthogonal pairs extending (ZT", 3') are

partially ordered by the following relation: (ZTX, 3X) > (ZT2, 32) if 3X 2 32
(equivalents, if Z7\ ç ZTfi-

Remark 1.3. Suppose that Ex, E2 axe localizing functors whose associated or-

thogonal pairs satisfy (S?x , 3X) > (S?2, 32). Then E2 : 3X -+ 32 is left ad-

joint to the inclusion 32 —» 3X. In particular, there is a natural transformation

Ex -> E2 which commutes with the localizing transformations r\x : Id —> Ex,

n2 : Id —» E2 .

Remark 1.4. If (S",3) extends L9",3') over f,  then

((S^Y1, (S")1) >(^,3)> ((3')L, (31)11).

Accordingly, we call ((5e")11, (Z?")-1) the maximal extension of (ZZ7", 3')

over ^ and ((3')1-, (3')±1) the minimal extension.

2.   P-LOCAL GROUPS, MODULES AND SPACES

This section contains the algebraic foundations needed to describe a cer-

tain idempotent monad in the pointed homotopy category of connected CW-
complexes. The key concept is that of a group G acting P-locally on an abelian

group A (Definition 2.4). The motivation to consider such actions comes from

Theorem 2.1 below.
When dealing with spaces and maps, we work in the based setting throughout.

Thus [A, Y] denotes the set of pointed homotopy classes of maps from A to

Y. By P we always denote a (fixed) set of primes, and by P' its complement

in the set of all primes. We write n e P' if n belongs to the multiplicative
closure of the primes in P'. A group G will be called P-local [16, 22, 27] if
the «th power map x i-> xn is bijective on G for every n e P'.

Theorem 2.1. For a connected CW-complex X, the following assertions are

equivalent:

(a) On the loop space QA the nth power map co^ con is a selfhomotopy

equivalence for every n e P'.
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(b) The group [W,£IX] is P-local for every space W.

(c) The groups nx(X) and nk(X) » nx(X), k>2,  are P-local,  where xi

denotes the semidirect product with respect to the standard action.

Proof. This is a consequence of the natural group isomorphism

(2.1) nk(X)xTtx(X)^[Sk-xUpt,QX],

where pt denotes a disjoint base point; see [18, 19].   D

Definition 2.2. We call P-local those connected CW-complexes A satisfying

the equivalent conditions of Theorem 2.1.

Let map»(A, A) denote the space of pointed maps from A to A. Using

condition (2.1.b) and the exponential law [8], one infers

Proposition 2.3. If X is P-local, then the base point component of map*( A, X)

is also P-local, fior every finite CW-complex A.    D

Note that, if a CW-complex A is nilpotent, then the groups nk(X) » nx(X)

are nilpotent. Therefore, a nilpotent CW-complex A is P-local in our sense if

and only if the groups nk(X) axe P-local for k > 1, because P-localization

is exact in the category of nilpotent groups. Thus our terminology is consistent

with the classical one [16]. Next we characterize the action of the fundamental

group of a P-local space on the higher homotopy groups in a way which is more

readily accessible to methods from Homological Algebra.

Definition 2.4. Let G be a group and A a (left) ZG-module. Denote by co :

ZG —► End(A) the associated ring homomorphism. We say that A is a P-local

ZG-moduleif co(l +x + x2 + ■ ■■ + xn~x) e Aut(A) for all x e G, ne P'.

We also say that the action of G on A is P-local, or that G acts P-locally

on A. This notion is easily generalized to the case when A is a group, not

necessarily abelian, on which G acts; see [11, 12, 14, 19]. We shall often use

the notation

(2.2) p„,x = l+x + x2 + --- + xn-x.

Remark 2.5. Given a group G anda ZG-modnleA, the identity

(2.3) (a,x)n = (pn,xa,xn),        n>l,

in the group A x G shows that Ax G is P-local if and only if G is a P-local

group and A is a P-local ZG-module.
In the light of Remark 2.5, condition (c) in Theorem 2.1 can be reformulated

as

n .   ,,        tt\(X) isa P-local group and each nk(X),   k>2, isa P-local

{        '      Z[nx(X)]-module.

Our next step is to identify P-local Z[7ti(A)]-modules as modules over a

certain universal ring associated to Z[7ti(A)], in which the elements 1 + x +
• • • + x"~x, x e 7ix(X), n e P', axe units. We need to recall some general

facts of ring theory. Let R be a ring with 1, and 5 ç R be an arbitrary

subset. As explained in [13], there exists a ring homomorphism a : R —> Rs,

unique up to isomorphism, such that

(i)   a(s) is invertible in Rs for all s e S,  and
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(ii) if / : R —► T is any ring homomorphism for which f(s) is invertible
in T for all s e S, then there is a unique ring homomorphism /' :

Rs - T with fa = fi

In particular, (ii) shows that q is a ring epimorphism, meaning that for every

diagram of rings

R A Rs ^ T
V

where ua = va, it follows that u = v. Therefore [26], the category of

Ps-modules embeds as a full subcategory in the category of P-modules via

a,  and this embedding has a left adjoint a* given by

(2.4) a*(A) = Rs®RA.

We apply these considerations to the case R = ZG, G a given group, and

S the multiplicative closure of the elements p„,x, x e G, n e P', cf. (2.2).
Thus we obtain a universal ring homomorphism

(2.5) a : ZG — (ZG)S

inverting the elements of S.

Therefore, a ZG-module A is P-local if and only if the ring homomorphism

co : ZG -» End (.4) factors uniquely through (2.5); i.e. P-local ZG-modules are

precisely (ZG)s-modules.

If the group G is commutative, then (ZG)s = S~X(ZG) is the usual ring of

fractions [2]. In particular, of course, if G = {1}, then (ZG)s = ZP, the ring

of integers localized at P.

We now collect several elementary facts concerning (ZG)s-modules which

will be needed in the sequel.

Lemma 2.6. Let G be a group, and

0^A'^A^A"-*0

a short exact sequence of ZG-modules. Then, if any two of A', A, A" are P-
local, so is the third.

Proof. For each neP' and x e G, the operation p„yX induces the commut-

ing diagram below.

0 -► A' -► A -► A" -► 0

Pn.x Pn,

0 -► A' -► A -► A" -> 0

Now our claim follows from the five-lemma.   D

Lemma 2.7. Let G be a group, A a P-local ZG-module, and B a nilpotent

ZG-module. Then the diagonal action of G on each of the following abelian

groups is P-local :

A®ZB,        TorV,^),        Homz(ß,^),        Extz(B, A).

Proof. Argue by induction on the nilpotency class of the action of G on B,

using Lemma 2.6. If this action is trivial, the ZG-module structure on each of

the abelian groups listed is induced by that of A, i.e. it factors as

ZG % End(A) -» End(C),
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where C is any of A®%B, Toxz(A,B), Homz(P,^), Extz(P, A). Hence,

it factors through a : ZG -* (ZG)S ; cf. (2.5).   D

Lemma 2.8. Let N >-> G -» Q be a central group extension and A a P-local

ZG-module. Then the induced action of Q on Hk(N ; A) and Hk(N; A) is
P-local for all k.

Proof. Since the conjugation action of G on N is trivial, the action of Q on

Hk(N; A) is induced by the action of G on A, i.e. the following diagram

commutes.
ZG —£-►       Endz^(^)

I I
Zß -> End (Hk(N ; A))

Now use Lemma 2.9 below. The same argument applies to cohomology.   D

Lemma 2.9. Let cp : G —> Q be a group homomorphism.

(i) If B isa P-local ZQ-module, then B is also P-local asa ZG-module.
(ii) If cp is an epimorphism then the converse in (i) also holds.

Proof. This is straightforward.   D

In particular, every P-local ZG-module is a Zp-module. If the action of G

is trivial, then the two notions coincide.

Lemma 2.10. Every nilpotent action of a P-local nilpotent group G on a Z/>-

module A is P-local.

Proof. This follows from Remark 2.5; cf. [16].   D

Lemma 2.11. Let N >-» G -» Q be a group extension in which N is P-local

and Q is P-torsion. Then G is P-local.

Proof. See [3, Theorem 11.5].   D

Corollary 2.12. Every action of a P-torsion group G on a Zp-module A is

P-local.

Proof. A P-torsion group G is always P-local. Moreover, A » G is P-local

by Lemma 2.11. Thus our assertion follows from Remark 2.5.   D

Corollary 2.13. If the connected CW-complex X has a finite P-group as its

fundamental group, and ZP-modules as its higher homotopy groups, then X is

a P-local space.   D

Lemma 2.14. Suppose A is a P-local ZG-module. Then every P'-torsion ele-

ment of G acts as the identity on A.

Proof. If x is P'-torsion, then x" = 1 for some neP', and hence we have

the following identity in the ring ZG :

(2.6) 0 = jc"-1 = (x - 1)(1 + x + x2 + ■ ■ ■ + x"-x).

Since I + x + x2 + ■ ■ ■ + xn~x acts as an isomorphism of A, it follows that

x - 1 acts as 0, i.e. xa = a for every a e A.    D

Corollary 2.15. If G is a P'-torsion group, then all P-local ZG-modules are

trivial ZG-modules.    □
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We conclude this section by initiating a comparison of the rings ZPG and

(ZG)s, for a P-local group G. The lemma below follows directly from the
definitions.

Lemma 2.16. Let G be any group.  Then (ZG)s is canonically isomorphic to

ZPG if and only if all elements of the form l+x-\-\-xn~x,   x eG,   n e P',
are units in ZPG.    D

On the other hand, we have

Lemma 2.17. Let fi: ZG —» R be a ring homomorphism. View R as a left ZG-
module via fi. Then R isa P-local ZG-module iff f(l + x-\-n""1) is a
unit in R for all x eG,   n e P'.

Proof. This follows from considering the ring homomorphisms

ZG A R A End(P)

where (p(r))(s) = rs, and observing that the inverse image of Aut(P) under
p is precisely the group of units of P.    D

Theorem 2.18. Let G be a P-torsion group. Then

(a) 1 + x + ■ ■ • + x"~x is a unit in ZPG for all x eG, n e P'.

(b) (ZG)s = ZpG.

Proof. Given x eG, let C = (x) be the cyclic subgroup of G generated by x.

By Corollary 2.12, ZPC isa P-local ZC-module via the inclusion ZC^ZPC.
Now use Lemma 2.17 to infer (a) and Lemma 2.16 to infer (b).   D

Alternatively, a proof of Theorem 2.18 can be based on Galois theory, using

the ring isomorphism cf> : QC —> Yld^m Q(ft>?), cf. [25], where C is any cyclic

subgroup of G, m the order of C, and co = e%'. We owe this argument to
S. Sehgal.

3. The P-localization functor A -> XP

Theorem 2.1 suggests to regard P-local CW-complexes as classifying spaces
of Aoo-associative //-groups which are P-local in the sense that their P'-power

maps are self-homotopy equivalences. Due to the special nature of such spaces,

we investigate them here in more detail.

P-local CW-complexes form a class 3p which fits into an orthogonal pair

(ZTp, 3p) in Ho (the pointed homotopy category of connected CW-complexes).

Moreover, 3p is the orthogonal complement of a countable collection of maps;

see Theorem 3.1. Maps in ZTp induce a P-equivalence of fundamental groups

and isomorphisms in (co-)homology with certain twisted P-local coefficients;

see Theorem 3.2. Next, we construct an idempotent functor ( )P associated to

the orthogonal pair (S^P, 3P) in the sense of §1. This functor indeed extends

P-localization of nilpotent spaces, as is shown in §4.

In the category of groups, the class of P-local groups dP is the orthogonal

complement of the set

(3.1) tp = {Z2z,   neP'}.

Setting sp = (i//>)x, we obtain an orthogonal pair (sP, dP) in the category
of groups.   We refer to homomorphisms in sP as P-equivalences. It is well
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known [12, 22] that there is an idempotent monad (( )P, I) associated with the

orthogonal pair (sP, dP), referred to as P-localization of groups. It is also

known [14, 24] that (( )p, I) induces on nilpotent groups P-localization in

the classical sense [16]. Moreover, (( )P, I) is readily seen to be the maximal

extension of P-localization of nilpotent groups, cf. Remark 1.4 above.

For k > 2, we denote

(3.2) Sk = S'A^-'upt),

where pt denotes a disjoint base point. Thus Sk is a twisted Moore space

whose homotopy type is that of Sx V Sk, for k > 2, but their respective

suspension-induced co-//-structures are not isomorphic, cf. (3.4) below. For
convenience, we define Sx = Sx. Let pn: Sx —* Sx be the standard map of

degree n, and consider the set

(3.3) ZrP = {pk;Sk^Sk,   k>l,  neP'},

where p\ = pn and pk = pn A Id for k > 2. Then we have

Theorem 3.1. With the above notation, (ZTp)1- = 3P in Ho.

Proof. By (2.1), there are natural group homomorphisms

(3.4) [Sk, X] S [Sk~x Upt, QA] S ti*(A) x nx(X)

for k > 2 and every connected space A. Moreover, the induced function

(pkr-.[sk,x]^[sk,x]

is precisely the nth power map for k > 1. Thus our claim follows from Theo-

rem 2.1.   D

We conclude that the class 3P is saturated. Maps in ZTp = (3p)1- are called
P-equivalences. Our next goal is to give an explicit description of these. For a

group G and a set of primes P, we shall write

(3.5) P[G] = (Z[Gp])s

where 5 is the multiplicative closure of the elements 1 + x + x2 -\-h x"~x,

x e GP, n e P', in the ring Z[GP] ; cf. (2.5). Hence, P[G]-modules are
precisely abelian groups provided with a P-local action of Gp. For a space

A, we denote, again for simplicity,

(3.6) P[X] = P[nx(X)].

With this notation, we have the following characterization of P-equivalences.

Theorem 3.2. Let f : X -> Y be a map between connected spaces. Then f is a

P-equivalence if and only if fi : nx(X) -> nx(Y) is a P-equivalence of groups

and

(a) f :Hk(Y;A)^Hk(X;A)

for all k and every (left) P[Y]-module A or, equivalently,

(b) fm:Hk(X;P[Y]) = Hk(Y;P[Y])

for all k.
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Proof. Our argument is analogous to the one sketched in [1, p. 84]. If / : A —>

F is a P-equivalence, then, for each P-local group G, / is orthogonal to
K(G, 1), and this provides a bijection

fi* :Hom(nx(Y),G)='Hom(7ix(X), G).

This proves the first assertion. The second assertion is proved using a twisted

Eilenberg-Mac Lane space [15]: Given a P[y]-module A and an integer n > 1,

set G = nx(Y)p and let G act by homeomorphisms on a K(A, n). Consider

the space

(3.7) LG(A,n) = EGxGK(A,n),

where EG is the universal cover of K(G, 1). If n > 2, then LG(A, n) has

precisely two nonvanishing homotopy groups: G in dimension 1 and A in

dimension n. Moreover, the induced action of G on A is the given one. If

n = 1, then LG(A , n) = K(AxG, 1). In any case, by Theorem 2.1 and Remark
2.5, LG(A,n) is P-local and hence orthogonal to /. This gives a bijection

f*:[Y,LG(A,n)]^[X,LG(A,n)],

which restricts to an isomorphism [ 15]

r:H"(Y;A) = H"iX;A),

as required. The case n = 0 is trivial. This implies (a).

Now assume that /» : nx(X) —► tti(F) is a P-equivalence and that (a) holds.

Then, for a map g : X —► Z with Z P-local, there is a unique homomorphism

cp : nx(Y) —> nx(Z) rendering commutative the diagram

nx(X)    -^   nx(Y)

(3.8)
g.

nx(Z)

because fi isa P-equivalence and 7Ti(Z) is P-local. Now cp can be realized

by a map from the two-skeleton of Y to Z, whose restriction to the one-
skeleton is uniquely determined, up to homotopy, by cp. Thus, the obstructions

to existence and uniqueness, up to homotopy, of a map g' : Y —► Z such that

g'f ~ g lie in the cohomology groups

(3.9) Hk (Y, X ; m(Z)) ,     i>2,    ke{i+l,i}.

But these vanish by assumption, because the groups n¡(Z), i > 2, axe P[Y]-

modules via cp, cf. Lemma 2.9. Next, (b) => (a) follows from Lemma 5.3.

Finally, (a) =» (b) follows from Corollary 7.3.   D

Now we proceed to prove the existence of an idempotent monad (( )P, I)

associated with the orthogonal pair (^, 3P). The argument is a direct appli-

cation of the technique developed in [12].
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Theorem 3.3. For every connected space X there is a map I : X —> XP in ZTP

with XP in 3P.

Proof. For each map pk : Sk -» Sk, k > 1, n e P', construct the homotopy

push-out (double mapping cylinder)

sk —^U sk

(3.10) Pkn{ J'J,*

# —— Zn,k
ll.k

and observe that the maps t'n k axe P-equivalences, because the pk axe such.

Define, by means of (3.10), maps

(3.11) un,k:Zntk-*Skx

such that unktln k = Id for all k > 1, n e P', i = 1, 2. Then the maps u„¡k

axe P-equivalences as well. We next construct a direct system

(3.12) A = A0^Ai JUX2-^---

in which each s, is a P-equivalence. Assume A, has been constructed for

/ > 0. If A, is P-local, set XP = A,. Otherwise, for each n e P' and
each element z e 7ik(X¡) x nx(X¡) not having an «th root, choose a map

cpz : Sk —► A, representing z. For each pair x, y of elements of 7i*(A,)><i7ti(A,)

such that xn = yn, n e P', choose a map y/x,y : Zn k -» A, using (3.10), in

such a way that ipx,yt„ k represents x and Vx,yt2 k represents v. Define a

homotopy push-out

V..*((V,5*)v(V,,,zllffc)) -► V.^^V.^viV,,^))

(3.13) | |

A, —'■—> A,+i

in which the upper arrow is a coproduct of copies of maps pk and un k (which

is a P-equivalence) and the left-hand vertical arrow is defined by means of the

maps cpz and y/Xty as chosen above. Therefore, s, isa P-equivalence. Let XP

be the homotopy direct limit of (3.12), and / : A —> XP the composite map. It

is plain that / is a P-equivalence. To check that XP is P-local, it suffices to

show that Ap is orthogonal to each pk. But this is ensured by the construction

of (3.13), together with the compactness of the spaces Sk and Znk.    D

Proposition 3.4. For every connected space X, the induced homomorphism /* :

7Ti(A) —* nx(XP) is P-localization in the category of groups.

Proof. This is an immediate consequence of Theorem 2.1 and Theorem 3.2.   D

4. Behaviour of the functor (   )P on nilpotent spaces

Let (ZTp,3'p) be the orthogonal pair associated with P-localization ofnilpo-

tent spaces [7, 16]. In this section we prove
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Theorem 4.1. The orthogonal pair (ZTP, 3P) discussed in §3 extends (ZTp , 3'P),
that is, SPj, ç S?P and 3'Pc3P.

Consequently, for every nilpotent CW-complex A the map / : A —> XP

given by Theorem 3.3 is equal to the P-localization of A in the classical sense.

Proof of Theorem 4.1. The fact that the class 3'P is contained in 3P has been

shown in §2. We next check that ZTP is contained in ZTP. Let /:I-»y be

in ZTP, i.e. the spaces A,  Y are nilpotent and

(4.1) fi:Hk(X;ZP) = Hk(Y;ZP)   for all Ac.

Then, as pointed out at the beginning of §3, fi : nx(X) -> nx(Y) is certainly a

P-equivalence of groups. Hence, it suffices to prove that

(4.2) fi, : Hk(X ; A) = Hk(Y ; A)   for all k and every P[F]-module A ;

see Theorem 3.2. Fix one such module A. Plainly, it suffices to prove (4.2) for

maps /: A -► Y which P-localize in the classical sense. In that case, we have

a homotopy commutative diagram of universal covers, in which the vertical

arrows are P-localizations of nilpotent spaces [16]:

X -► A -► K(nx(X), 1)

(4.3) | V
Y -► Y -► K(7ix(Y), 1).

Since the spaces A,  ? are simply connected, we have

(4.4) (f),:Hk(X;A) = Hk(Y;A)   for all k,

because A is in particular a Z/>-module. Now we look at the induced homo-

morphisms

(4.5) (/)» : Hr(nx(X);Hs(X;A)) - Hr(nx(Y) ; HS(Y; A)),

which are isomorphisms for all r, s, by Lemma 4.2 and Theorem 4.3 below,
together with (4.4). Therefore, the morphism of spectral sequences with coeffi-

cient module A associated with (4.3) is indeed an isomorphism, which implies

(4.2). This completes the argument.   D

Lemma 4.2. Let G be a group acting by homeomorphisms on a connected CW-

complex X. Assume that the induced action of G on Hk(X; Z) is nilpotent for

all k. Then, for every P-local ZG-module A, the diagonal action of G on

Hk(X ; A) is P-local for all k (here A is viewed as a trivial coefficient module

in A).

Proof. The case k = 0 is trivial. For k > 1, we have a short exact sequence

of ZG-modules (with diagonal action)

0 -» Hk(G; Z)®ZA^ Hk(G; A) - Tor2(Hk_x(G; Z),A)^ 0.

Now Lemma 2.6 and Lemma 2.7 give the desired result.   D

This applies, of course, to G = nx(Y), X = Y in (4.5). The action of

nx(Y) on the groups Hk(Y;Z) is nilpotent because the space Y is nilpotent

[16, p. 70].
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Theorem 4.3. Let G be a nilpotent group and I : G -» Gp its P-localization.

Then, for every P-local Z[GP]-module A,  the homomorphisms

U:Hk(G;A)^Hk(GP;A)   and   I* : Hk(GP; A) - Hk(G; A)

are isomorphisms for all k.

Proof. We shall give the proof only for homology, since it is completely analo-

gous in the case of cohomology. The following argument is partially due to A.

Reynol [21].
We argue inductively on the nilpotency class c of G. Thus assume first that

G is commutative, so that we can consider the group extensions

(4.6) O^Ker/^G-^im/^0

(4.7) O^im/^Gp^coker/^0

and the corresponding Lyndon-Hochschild-Serre spectral sequences with coeffi-

cient module A. Note first that the action of Ker/ on A is trivial and, hence,

from the fact that Ker/ is P'-torsion [16] and the Universal Coefficient The-

orem it follows that

Hs(KexI ; A) = 0   for all s > 1

and
H0(Kex I ; A) * A.

Therefore, the spectral sequence associated with (4.6) collapses and gives iso-

morphisms

(4.8) U : Hk(G; A) = Hk(iml; A)   for all k.

Now look at the spectral sequence associated with (4.7). The action of coker/
on Hs(iml; A) is P-local by Lemma 2.8 and hence trivial by Corollary 2.15,

because coker/ is certainly P'-torsion. This tells us, again by the Universal

Coefficient Theorem, that

Hr (coker / ; Hs(im l;A)) = 0   for r > 1

and
//0(coker/; Hs(iml; A)) = Hs(iml;A),

so that we obtain isomorphisms

(4.9) j*:Hk(iml;A)*iHk(GP;A)   for all A:.

Finally, (4.8) and (4.9) together complete the proof in the case c = 1. The

inductive argument is carried out without any additional difficulty, by using

Lemma 2.8 and the diagram of central extensions

rc~'G     ->    G   -»     G/rc-'G

11 11 / |

(r~xG)P ~  GP  -  iG/r<-xG)p

where TkG, k > 0, denotes terms in the lower central series of G.    D
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Remark 4.4. Theorem 4.3 actually extends Theorem 4.14 in [16, p. 40], since

every nilpotent action of a nilpotent P-local group on a Zp-module is P-local

(Lemma 2.10).
We also record a useful corollary of Theorem 4.3, applications of which have

been given in [21].

Corollary 4.5. Let G be a nilpotent group and I : G —> Gp its P-localization.

Assume that GP acts on a ZP-module A through co : Gp —> Awt(A) in such a

way that im co is a torsion group of finite exponent. Then

l,:Hk(G;A) = Hk(Gp;A)

and
I* :Hk(GP;A)^Hk(G;A)   for all k.

Proof. Set Q = im co. Then Q is a finite P-group because it is an epimorphic

image of a P-local group. Hence, by Corollary 2.12, the action of Q on A is

P-local and, by Lemma 2.9, so is the action of GP on A. Now Theorem 4.3
applies.   G

Note that the hypothesis concerning the action co is essential. For otherwise

we have the explicit counterexample G = Z and A = Q[Q] ; see [10].

5.  LOCALIZING WITH RESPECT TO HOMOLOGY WITH TWISTED COEFFICIENTS

In this section and the two next ones we consider our P-localization functor

from the homology point of view. We show that it is a particular output of a

certain rich source of idempotent monads in Ho. In fact, Bousfield's localiza-

tion with respect to homology [4] can be paralleled for homology with twisted

coefficients, provided we work in the appropriate categories. The resulting lo-

calizing functors can be "spliced" to produce localizing functors in Ho, some

of which extend the familiar P-localization of nilpotent spaces. In this section,

we explain the procedure of localizing with respect to homology with twisted

coefficients. Splicing will be described in §6.
For a group G, denote by Ho(G) the category whose objects are pairs

(A, cp), where A is a connected space and cp : nx(X) —► G is a group ho-
momorphism. Morphisms from (A, cp) to (Y, \p) are (pointed homotopy

classes of) maps / : A —» Y such that cp = y/f*, where fi:nx (A) —> nx (Y) is
the homomorphism induced by /.

Theorem 5.1. Let G be a group and A a (right) ZG-module. Then there is an

idempotent monad (E, n) in the category Ho(G) whose class of E-equivalences

consists precisely of all //»(   ; A)-equivalences.

We base our proof of Theorem 5.1 on the existence result for localizing

functors given in [12]. For the convenience of the reader, it is reproduced as

Theorem 5.2 below, in a form adapted to our present purposes.

Theorem 5.2. Suppose that a class ZT of morphisms in Ho(G) satisfies condi-

tions (Cl) to (C6) below. Then ZT is saturated and Ho(G) admits a localizing

functor whose class of equivalences is ZT.

(Cl)  ZT contains all isomorphisms in Ho(G).

(C2) If the composite gf of two morphisms is defined and any two of fi, g,
gfi are in ZT,  then the third is also in ZT.
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(C3)  The coproduct of a set of morphisms in ZT is in ZT.

(C4) There is a set S%cS^ such that (S^)1 = S"1.

(C5) For every diagram C <— A -L+ B with s e ZT there is a weak push-out

A -^—> B

•\       1
C -^—+ Z

with t e ZT.
(C6) For every ordinal c and every directed system F : c —> Ho(G)  with

s, : F(0) —> F(i) in ZT for all i < c,  there is a weak colimit T such

that the morphism sc : F(0) -> T is in ZT.   D

Now we proceed to verify these hypotheses in our case.

Proof ofiTheorem 5.1. Let ZT be the class of //»( ; A)-equivalences in Ho(G).

Conditions (Cl), (C2) and (C3) are obviously satisfied. Let c be the smallest

infinite ordinal whose cardinality is bigger than the cardinality of A. The col-

lection of spaces A with at most c cells forms a proper set of homotopy types.

Choose a representing space in each of these homotopy types, and let S% con-

sist of all morphisms / : (A, cp) —* (Y, \p) in ZT where A and Y are such

representing spaces. Then Lemma 11.3 in [4] can be adapted to also incorporate

twisted coefficients. This proves that (ZTq)1 = ZT-1-. Hence, condition (C4) is

satisfied. In (C5) and (C6) we can simply take the corresponding homotopy

colimits, together with the obvious group homomorphisms.   D

In general, the construction of nx : X -> EX for a given space A will

require a homotopy direct limit of length up to the ordinal c ;  see [4, 11].

The next lemmas are the key to interrelate the functors given by Theorem 5.1.

Note that, if (A, cp) is an object of Ho(G), then each ring homomorphism

a : ZG —> R allows us to regard R as a twisted coefficient module in A.

Lemma 5.3. Let G be a group and fi : (A, cp) —> (Y, tp) a morphism in Ho(G).

Let a : ZG —» R be a ring homomorphism. If fi is an //»( ; R)-equivalence,

then

(i)   / is an //»(   ; A)-equivalence for every right R-module A;  and

(ii)   / is an H*(   ; B)-equivalence for every left R-module B.

Proof. We can assume, without loss of generality, that A is a subcomplex of

Y and that / is the corresponding inclusion. Let q:Y-^Ybe the universal

cover of Y and set X = q~x(X), n = nx(Y). Let C, = C.(Y, X) denote the

associated cellular chain complex. Then the hypothesis,

0 = Hk(Y,X;R) = Hk(R®ZnC)   for all A:,

tells us precisely that R ®Zn C, is a free resolution of 0 as an P-module.

Consequently,

Hk(Y,X;A) S Hk(A ®R R ®Zn C) = Toif (A, 0) = 0
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and

Hk(Y, A; B) & HkHomZn(C,HomR(R, B))

?¿HkrlomR(R®znC,B)

= E\tkR(0,B) = 0   for all k.   D

Let e : Z —* ZP denote the inclusion, and en denote the composite

(5.1) Z^Z-^ZP.

Given a Z[Z/>]-module A, we shall denote by e*A the Z[Z]-module defined
via (5.1).

With the notation of §3, we can consider in Ho(Z/>) the morphisms

(5.2) pk:(Sk,en)^(Sk,e),        k>l,neP'.

Lemma 5.4.   (i) pk is an //*(   ; P[Z])-equivalence for all k > 1, ne P'.

(ii)   Hx (Sk ; A) = 0 for all k > I, where A is any one of the following
coefficient modules (n e P') :

Z[ZP],   e*nZ[Zp],   Zp[ZP],   e*nZp[Zp],   P[Z],   e*nP[Z).

Proof. Let x be a generator of nx(Sk). The cellular chain complex of the

universal cover of Sk consists of a copy of Z[Z] in dimensions 0, 1 and k.

Therefore, the homomorphisms

(5.3) (pk). : Hi(Sk ; e*nP[Z]) -^ Ht(Sk ; P[Z])

are induced by the chain map

...0 -► P[Z] —^-» 0 -► ... -* P[Z] —?!—» P[Z]-► 0

..«*       1 lfl        1=       1
...0 -► P[Z] —^-f 0-► ... -► P[Z] —$—> P[Z] -» 0

where dx = I - x" ,   d[=l-x,   dk = d'k = 0 (even if k = 2),  and

<P\ — 9k = I + x + x2 H-h xn~x.

Therefore, the above chain map is a chain isomorphism and (5.3) is an isomor-

phism for all i, as claimed. To prove (ii), consider the chain map above with

coefficient module A. First of all, dx and d[ are monomorphisms with any of

the first four coefficient systems listed, because Z[Z/>] and Zp[ZP] contain no

zero divisors. For the remaining two systems, the claim follows because P[Z]

is flat as a Z[Z/>]-module.    D

6. Splicing localization functors

In this section we show how localization functors on different categories

Ho(G) can be spliced to yield localization functors on Ho. The main abstract

result is Theorem 6.2. In conjunction with the ordering of orthogonal pairs, as

in Remark 1.4, it serves us as a pivotal point to access and compare various

idempotent functors on Ho.
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The basic ingredient in Theorem 6.2 is a pair of matching functors. To explain

this, suppose given

(i) a localization functor L on the category of groups, with associated

orthogonal pair (ZT ,3);
(ii) a functor F : Z3 -> M together with a natural transformation T :

Id -> F. Here Z% denotes the category of rings, and Z3 denotes the
category of integral group rings of groups in 3 (and ring homomor-
phisms induced by group homomorphisms).

To a connected CW-complex A, we apply the following process: Associate

to A the object (A, cpx) in Ho(L7Ti(A)) , where cpx : H\(X) —► Lnx(X) is
the localizing homomorphism. By Theorem 5.1, the object (A, cpx) has an

//*( ; FZ[L7Ti(A)])-localization in the category Ho(L7Zi(A)). Denote it by

(X[, y/x), Wx '■ n\iX[) ~* Lnx(X). Now forget the twist in this object, so as

to obtain again a space X[ in Ho. Schematically,

Ho(L7r,(A)): (A, cpx) -► (X[, ipx)

(6.1) | |

Ho: A       —ÜÍU       X[

Definition 6.1. We say that the functors F and L match if the induced ho-

momorphism (nx)t : nx(X) —► nx(X[) is an L-equivalence for every space

A.

Theorem 6.2 ("Splicing theorem"). For matching functors F and L the asso-

ciation X -* X[ determines an idempotent monad on Ho with natural trans-

formation n.

Proof. First we check functoriality. Thus start with a map / : A —► Y and
let fi : nx(X) —> nx(Y) be the induced homomorphism of fundamental groups.

Then the morphism in Ho(L7Ti(7))

(X,(Lf,)cpx)^(X[,(Lf*)tpx)

is an //* ( ; FZ[L7ti(y)])-equivalence, by Lemma 5.3. Hence, there is a

unique morphism /' in Ho(L7Zi(F)) rendering commutative the diagram

(X,(Lfi)cpx) -Ü-» (X[,(Lfi)tpx)

(6.2) /'

(Y,cpY)      ^—      (Y[,ipY),

which gives a commutative diagram in Ho

X _?£-> X[

(6.3) f[ [r

>h
♦i£.

Moreover, if /" : X[ -* Y[ also renders (6.3) commutative, then

¥YÍfi")*ir¡x)* = WYÍriY)*fi = V'y(/').(»?jr). = (Lf,)y/X(nx),,
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and, since (nx)t is assumed to be an L-equivalence, it follows that wif")* =

(Lfi)y/X. Thus /" is also a morphism in Ho(Ltii(F)) and hence /" ~ f.

Functoriality follows. Next we check idempotence. Since Lnx(X[) = Lnx(X)
by assumption, the homomorphism <pxr  coincides with  ipx. Therefore, the

object (X[ ,cpXf) is already //*( ; FZ[L7ti(A)])-local, and it follows that the

map nXF = (nx)' : X[ -» (X[ )    is a homotopy equivalence.   D

We say that an idempotent monad (E, n) in Ho is spliceable if it can be

obtained from a pair of matching functors F, L by means of (6.1).

Theorem 6.3. The P-localization monad (( )P, I) described in §3 is spliceable.

Proof. Choose L to be P-localization of groups and set PZG = (ZG)S ; cf.

(2.5). Thus, for a CW-complex A, FZ[Lnx(X)] = P[A]; cf. (3.6). Next
we show that the functors F and L match, and that the resulting monad is
precisely (()p, I). Given a space A, consider the morphism

(6.4) l:(X,tpx)^(Xp,ld)

in Ho(7r.(A)p). We check that (6.4) is //*( ; P[A])-localization, so that X[ ~
XP and nx = I, as claimed.

First we see that (Xp, Id) is an //»( ; P[A])-local object. Thus assume given

an //»( ; P[A])-equivalence s: (A, u) -» (B, v) and a morphism f : (A, u) ->

(Xp, Id). Since the groups n¡(Xp), i>2, axe P[A]-modules, the cohomology

groups Hk(B, A; n¡(Xp)) vanish for i > 2, by Lemma 5.3. Now existence

and uniqueness of a morphism g: (B, v) —> (Xp, Id) satisfying gs = f follow
by obstruction theory, as in (3.9).

Secondly, we check that (6.4) is an //»( ; P[A])-equivalence. Let (C, co) be

an //*( ; P[A])-local object in Ho(nx(X)p), and assume given a morphism /:

(A, cpx) —► (C, co). By Lemma 5.3 and Lemma 5.4, the morphisms pk : Sk —>

Sk introduced in (3.3) are //»( ; P[A])-equivalences via any homomorphism

Z —» 7ti(A)p. It follows that C is a P-local space, by Theorem 3.1. Since
/ : A —► Xp P-localizes in Ho, existence and uniqueness of a morphism g :

(Xp ,ld)—>(C,co) satisfying g I ~ / is straightforward.   D

Example 6.4. The class 3 of connected spaces whose higher homotopy groups
are P-local satisfies 3 = ZT1 in Ho,  where

(6.5) y = {/»„: 5*-* 5*, Ac>2, neP'},

pn denoting the map of degree n. Using the same arguments as in Theorem 3.2,

one sees that the class ZZT = 31 consists of those maps fi : X —> Y inducing

an isomorphism of fundamental groups and being H*( ; ^-equivalences for

every Zp[7t1(F)]-module A. Paralleling the arguments of §3, an idempotent

monad (E, n) associated with the orthogonal pair (5*, 3) can be obtained.

We claim that this monad is spliceable. In the setting of Theorem 6.2, choose

L to be the identity and PZG = ZP®ZG = ZPG. These functors match, and
the resulting monad is (E, n). The proof is completely analogous to the one
given in Example 6.3.

The orthogonal pair generated by {p„ : Sk —> Sk , k > 1, n e P'} does not
admit a localization functor; see [10].
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Example 6.5. Given an arbitrary ring R, viewed as a trivial coefficient module,

the //*( ; P)-localization functor of [1, 4] is spliceable: Choose L to be
LG = {1} for every group G,  and FZG = R.

Example 6.6. For any ring R, let L be the //P-localization functor on the cat-

egory of groups [4], and let F be any functor such that FZ = R. Then L and F

match because every //*( ; PZG)-equivalence is also an //*( ; R)-equivalence,

which induces an L-equivalence of fundamental groups, cf. [4]. If FZG = P

for every G then the resulting functor is again //»(   ; P)-localization.

We close this section by displaying the ordering relations between some of

the spliceable localizing functors explicitly described above; see Remark 1.3.
Thus, there is a natural transformation E -> E' if the class of F-equivalences

is contained in the class of F'-equivalences.

We denote by ( )p both P-localization of groups and spaces, and by EP

both Z/Zp-localization of groups and //»( ; Zp)-localization of spaces. In the

following diagram, we represent each functor by a matching pair L, F defining

it. The arrows are natural transformations.

(A)   L = Id, FZG = ZPG

/ \

(B)   L = ()p, FZG = (ZG)s (C)   L = EP, FZG = ZPG

\ /

(D)    L = EP, FZG = (ZG)S

I

(E)    L = EP, FZG = ZP.

Here (B) is the P-localization functor, and (E) is the Ht( ; Zp ̂ localization

functor.

Proposition 6.7. The //»( ; ZP)-localization is the minimal extension of P-

localization of nilpotent spaces.

Proof. The orthogonal complement of all P-local nilpotent spaces is contained

in the class of all //*( ; Zp)-equivalences, because the spaces A(Zp, n), n>

1, are nilpotent and P-local. On the other hand, //*( ; Zp)-equivalences coin-

cide with //«( ; Zp)-equivalences and their localization extends P-localization

of nilpotent spaces. Now our claim follows from Proposition 2.3 in [12].   □

We conjecture that the functor ( )p is the maximal extension of the P-

localization of nilpotent spaces. We know that the functor (C) in the diagram

above does not extend P-localization of nilpotent spaces (nor does any functor

above it) because an //,(    ; Zp)-equivalence between nilpotent spaces need
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not be an //*( ; A)-equivalence for A an arbitrary coefficient module whose

underlying abelian group is P-local [10].

7. The class of equivalences of a spliceable localization functor

Let L and F be a matching pair of functors in the sense of §6, and let

(E, n) be the associated idempotent monad in Ho,  cf. Theorem 6.2.

Lemma 7.1. If G is an L-local group, then K(G, l)FL ~ K(G, 1).

Proof. It suffices to show that the object (K(G, 1), Id) is //,( ; FZG)-local in
Ho(G). But (K(G, 1), Id) is indeed orthogonal to every morphism in Ho(G).
D

Theorem 7.2. A map fi : X -» Y in Ho is an E-equivalence if and only if

fi» : nx(X) —> nx(Y) is an L-equivalence and fi is an //»( ; FZ[L7Ti(F)])-
equivalence.

Proof. If / is an P-equivalence, then, for every L-local group G, K(G, 1) is

P-local by Lemma 7.1 and hence orthogonal to /. This proves the first claim.

Now, in the diagram (6.2), /' : (X[ , (Lfi)y/X) —► (Y¿ , ipY) is an isomorphism

by assumption and the horizontal arrows are H*( ; FZ[Lnx ( Y)])-equivalences,

so that / is also an //„( ; PZ[L^!(F)])-equivalence. Conversely, if fi :

7Ti(A) —> nx(Y) is an L-equivalence,  then the localization diagram in Ho

V t V

lx 1r

X[ -► Yf
L fl L

corresponds to a localization diagram in Ho(Lnx (Y)). But then /' is a homo-

topy equivalence because / is an //*(   ; PZ[L^i(F)])-equivalence.    D

For the spliceable functor ( )p we have an independent characterization of
its equivalences in terms of cohomology (see Theorem 3.2). Both descriptions
together yield

Corollary 7.3. Let f : X -» Y be a map in Ho inducing a P-equivalence of

fundamental groups. Then the following are equivalent:

(i)   f is an //»(   ; P[Y])-equivalence.

(ii)   / is an //»(   ; A)-equivalence for every right P[Y]-module A.

(iii)   / is an H*(   ; B)-equivalence for every left P[Y]-module B.    D

8. Some special features of P-localization

In this section we consider the connections between the functor ( )P dis-

cussed in §3, the //*( ; Zp)-localization functor EP, and the Zp-completion

functor (Zp)oo of Bousfield-Kan [7]. All spaces A are assumed to be connected.

From [7, II, 2.8] and the results of §6, we know that for every space A there
is a homotopy commutative diagram
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X

(8.1)

Ap    —►    EpX    —>    (Zp)00A
ß y

where /, n are the respective localization maps, and cp is the Zp-completion

map. Moreover, y is a homotopy equivalence if and only if the space A is

Zp-good [7], i.e. if and only if </> is an //»( ; Zp)-equivalence. The study of

Zp-good spaces continue to be a matter of current interest [6].

If the space A is nilpotent, then A is Zp-good and the maps ß, y in (8.1)

are homotopy equivalences. We provide the following generalization:

Proposition 8.1. If the space Xp is nilpotent, then X is Zp-good and the maps
ß, y m (8.1) are homotopy equivalences.

Proof. Every nilpotent P-local space is //»( ; Zp)-local. Thus, under our as-

sumption, / : A —» Ap is an H,( ; Zp)-equivalence into an //»( ; Zp)-local

space and hence / ~ n. Secondly, / induces a homotopy equivalence

(Zp)ocA ~ (Zp)ooAp ,

and plainly (Zp^Ap ~ Ap, because Ap is nilpotent P-local. It follows that

yß is a homotopy equivalence, and hence so is y.    D

The nilpotence of Ap can be checked in practice in some cases. For example,

it is guaranteed whenever 7Ti(A)p = {1}. Note that spaces such that tt^A^ =

{1} satisfy also HX(X; ZP) = 0 and hence they are indeed known to be Zp-good

[7, VII, 3.2].

Example 8.2. Let P = {3} and £3 denote the symmetric group on three ele-

ments. Then (£3)3 = {1} and, therefore,

(8.2) A(Z3, l)3~E3K(Zi, l)^(Z3)0OA(S3, 1),

which is a simply-connected space with nontrivial homotopy [7, VII, 4.4].

This last example turns out to be a particular case of a more general fact

(Theorem 8.4 below). We are indebted to G. Mislin for some key ideas in the
next proposition.

Proposition 8.3. Let X be a space whose homotopy groups 7i,(X) are finite for

/ > 1, and let P consist of a single prime p. Then

(i) The homotopy groups ni((ZP)00X) are finite p-groups fior i > 1.

(ii) The space (ZP)œX is nilpotent.
(iii) The Zp-completion map 4> : X -> (Zp)ooA is an //*(   ; A)-equivalence

for every (twisted) coefficient module A whose underlying abelian group

is a Zp-module.
(iv)  The kernel N of cp* : nx(X) -> nx ((Zp^A) satisfies NP = {1}.

Proof. Statement (i) is proved in [7, VII, 4.3]. Statement (ii) follows because

every action of a finite p-group on another finite p-group is nilpotent. Now

let F be the homotopy fibre of 4>. The homotopy groups 7i,-(F) are finite for
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i > 1, and, hence, so are the homology groups H¡(F ; Z), i > 1. It follows

that any action of nx ((Zp^A) on the groups H¡(F ; Zp) must be nilpotent.

Hence, we can apply the spectral sequence comparison theorem [17] to the
diagram

F ->      X       —1-+   (Zp)ooA

(8.3) j ¿j

pt -► (Zp)ooA —^ (Zp)ocA .

Since A is Zp-good [7, VII, 4.3], cp is an //*( ; Zp)-equivalence, implying

that H,(F ; Zp) = 0, for i > 1. Now, given a Zp-module A with an action

of 7Ti((Zp)00A), the groups H¡(F ; A), i > 1, vanish because the action of
nx(F) on A via (p is trivial. It follows from the top fibration in (8.3) that

<p. : Ht(X ; A) s //, ((Zp^A ; A)    for all i,

thus proving (iii). To prove (iv), observe that N = Kex(cp*) is an epimor-

phic image of nx(F) and, since P-localization preserves epimorphisms [22], it

suffices to show that 7îi (F)p = {1}. By Corollary 2.3 in [9],

nx(F)p^%x((Zp)00F).

and 7ti((Zp)ooP) vanishes because HX(F ; ZP) = 0.    D

Theorem 8.4. Let X be a space whose homotopy groups n¡(X) are finite for

i > 1, and P consist of a single prime p. Then Xp is nilpotent and the maps

ß, y in (8.1) are homotopy equivalences.

Proof. From (iii) and (iv) in Proposition 8.3 it follows that the map cp : X ->

(Zp)ooA is a P-equivalence, and from (i) and (ii) that (Zp^A is nilpotent

and P-local. Hence <f> ~ / and Ap is nilpotent. Finally, <j> ~ n because A is
Zp-good.    D

For a space A and a perfect normal subgroup N of nx(X) (i.e. HX(N;Z)
= 0), Quillen's plus-construction yields a homology equivalence with arbitrary

twisted coefficients q : X —> X+ such that the kernel of qt : nx(X) -» 7ti(A+)
is N,  cf. [20].

Proposition 8.5. Let P be a set of primes and let X be a space whose funda-
mental group has a perfect normal subgroup N belonging to the kernel of the

P-localizing homomorphism nx(X) -> 7Ti(A)p. Then the Quillen map q : X —>

A+ associated to N induces a homotopy equivalence XP ~ (A+)p.

Proof. Under these hypotheses, q% : nx(X) —> nx(X+) is a P-equivalence of
groups and hence q : X —> A+ is a P-equivalence of spaces.   G

The hypotheses of Proposition 8.5 are in particular satisfied if P consists

of a single prime p and 7Ti(A) is a finite perfect group. This provides an

alternative way to construct the space Ap in that case: First, add 2-cells and

3-cells to A, so as to kill nx(X) preserving homology, and then P-localize

the resulting simply-connected space A+.

We conclude by explaining the effect of the functor ()p on a wedge of circles.

Thus let A = V,e/ Sl,  where the index set / contains at least two elements.
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Then (Zp^A is an aspherical space with uncountable fundamental group [7,

IV, 5.3], while FpA is not known in general. However, it is known that the

homomorphism

y. :nx(EpX)^nx((Zp)00X)

is strictly surjective [5]. We next prove that Ap is aspherical. In this context,

note that P-localization sends countable groups to countable groups. Therefore,

7ii(Ap) is also countable, if / is countable.

We first state an obvious necessary and sufficient condition for K(G, l)p to

be aspherical; cf. Theorem 3.2 and Lemma 5.3.

Proposition 8.6. Given a group G and a set of primes P, the space K(G, l)p ¿s

a K(Gp, 1) if and only if the P-localizing homomorphism I : G —> Gp induces

isomorphisms

U:Hk(G;A) = Hk(GP;A)

for all k and every P[G]-module A.    D

Known examples of groups G satisfying the condition stated include:

(i) Nilpotent groups (Theorem 4.3).

(ii) Finite P-nilpotent groups [9].

(iii) The fundamental group of the Klein bottle,

(iv) All free groups (Theorem 8.7 below).

Theorem 8.7. If F is a free group and P a set of primes, then the P-localizing

homomorphism I : F —► Fp induces isomorphisms

l,:Hk(F;A) = Hk(FP;A)

for all k and every P[F]-module A.

Proof. We use the construction of FP given by Baumslag [3]. Thus

Fp = lim<P(/)

for a certain direct system <P in the category of groups, indexed by a (large)

ordinal a, with <P(0) = F, and in which each map s, : <P(z) —> 0(i + 1) is

injective. For a given index i, either <P(z + 1) = O(i') and s¡ is the identity,

or there exists a subgroup Z ç U ç Zp and a push-out diagram

U     ¿>        Zp

<P(z)    ->    <D(i + l)

where j is the inclusion and all arrows are monomorphisms. Now assume

given an abelian group A provided with a P-local action of Fp. Since ho-

mology commutes with direct limits, it suffices to show that every s, is an

//»( ; ^-equivalence. But the inclusion j P-localizes and hence it is an

//»( ; ^-equivalence, by Theorem 4.3. It follows, by the Mayer-Vietoris

sequence associated with (8.4), that s, is also an //»( ; ^-equivalence, as

desired.   D
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