Rees algebras of ideals having small analytic deviation
HTML articles powered by AMS MathViewer
- by Sam Huckaba and Craig Huneke
- Trans. Amer. Math. Soc. 339 (1993), 373-402
- DOI: https://doi.org/10.1090/S0002-9947-1993-1123455-7
- PDF | Request permission
Abstract:
In this article we identify two large families of ideals of a Cohen-Macaulay (sometimes Gorenstein) local ring whose Rees algebras are Cohen-Macaulay. Our main results imply, for example, that if $(R,M)$ is a regular local ring and $P$ is a prime ideal of $R$ such that ${P^n}$ is unmixed for all $n \geq 1$, then the Rees algebra $R[Pt]$ is Cohen-Macaulay if either $\dim (R/P) = 2$, or $\dim (R/P) = 3,R/P$ is Cohen-Macaulay, and $R/P$ is integrally closed.References
- Lâcezar Avramov and Jürgen Herzog, The Koszul algebra of a codimension $2$ embedding, Math. Z. 175 (1980), no. 3, 249–260. MR 602637, DOI 10.1007/BF01163026
- Jacob Barshay, Graded algebras of powers of ideals generated by $A$-sequences, J. Algebra 25 (1973), 90–99. MR 332748, DOI 10.1016/0021-8693(73)90076-8
- M. Brodmann, Asymptotic stability of $\textrm {Ass}(M/I^{n}M)$, Proc. Amer. Math. Soc. 74 (1979), no. 1, 16–18. MR 521865, DOI 10.1090/S0002-9939-1979-0521865-8
- Markus Brodmann, Rees rings and form rings of almost complete intersections, Nagoya Math. J. 88 (1982), 1–16. MR 683240
- P. Brumatti, A. Simis, and W. V. Vasconcelos, Normal Rees algebras, J. Algebra 112 (1988), no. 1, 26–48. MR 921962, DOI 10.1016/0021-8693(88)90130-5
- Winfried Bruns and Udo Vetter, Determinantal rings, Lecture Notes in Mathematics, vol. 1327, Springer-Verlag, Berlin, 1988. MR 953963, DOI 10.1007/BFb0080378
- Lindsay Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972), 369–373. MR 304377, DOI 10.1017/s0305004100047198
- R. C. Cowsik and M. V. Nori, On the fibres of blowing up, J. Indian Math. Soc. (N.S.) 40 (1976), no. 1-4, 217–222 (1977). MR 572990 C. DeConcini, D. Eisenbud, and C. Procesi, Hodge algebras, Astérisque 91 (1982).
- David Eisenbud and E. Graham Evans Jr., Generating modules efficiently: theorems from algebraic $K$-theory, J. Algebra 27 (1973), 278–305. MR 327742, DOI 10.1016/0021-8693(73)90106-3
- David Eisenbud and Craig Huneke, Cohen-Macaulay Rees algebras and their specialization, J. Algebra 81 (1983), no. 1, 202–224. MR 696134, DOI 10.1016/0021-8693(83)90216-8
- E. Graham Evans and Phillip Griffith, Syzygies, London Mathematical Society Lecture Note Series, vol. 106, Cambridge University Press, Cambridge, 1985. MR 811636, DOI 10.1017/CBO9781107325661
- Hubert Flenner, Die Sätze von Bertini für lokale Ringe, Math. Ann. 229 (1977), no. 2, 97–111 (German). MR 460317, DOI 10.1007/BF01351596
- Shiro Goto and Yasuhiro Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative algebra (Fairfax, Va., 1979) Lecture Notes in Pure and Appl. Math., vol. 68, Dekker, New York, 1982, pp. 201–231. MR 655805
- Shiro Goto and Yasuhiro Shimoda, On the Gorensteinness of Rees and form rings of almost complete intersections, Nagoya Math. J. 92 (1983), 69–88. MR 726141, DOI 10.1017/S0027763000020572
- Manfred Herrmann and Shin Ikeda, On the Gorenstein property of Rees algebras, Manuscripta Math. 59 (1987), no. 4, 471–490. MR 915998, DOI 10.1007/BF01170849
- M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up, Springer-Verlag, Berlin, 1988. An algebraic study; With an appendix by B. Moonen. MR 954831, DOI 10.1007/978-3-642-61349-4
- Ulrich Orbanz, Multiplicities and Hilbert functions under blowing up, Manuscripta Math. 36 (1981/82), no. 2, 179–186. MR 641973, DOI 10.1007/BF01170133
- M. Herrmann, J. Ribbe, and S. Zarzuela, On Rees and form rings of almost complete intersections, Comm. Algebra 21 (1993), no. 2, 647–664. MR 1199696, DOI 10.1080/00927879308824586
- J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra 74 (1982), no. 2, 466–493. MR 647249, DOI 10.1016/0021-8693(82)90034-5
- J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53–83. MR 701036, DOI 10.1016/0021-8693(83)90173-4
- J. Herzog, W. V. Vasconcelos, and R. Villarreal, Ideals with sliding depth, Nagoya Math. J. 99 (1985), 159–172. MR 805087, DOI 10.1017/S0027763000021553
- M. Hochster and L. J. Ratliff Jr., Five theorems on Macaulay rings, Pacific J. Math. 44 (1973), 147–172. MR 314834
- Sam Huckaba, On complete $d$-sequences and the defining ideals of Rees algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 3, 445–458. MR 1010369, DOI 10.1017/S0305004100068183
- Sam Huckaba, Analytic spread modulo an element and symbolic Rees algebras, J. Algebra 128 (1990), no. 2, 306–320. MR 1036393, DOI 10.1016/0021-8693(90)90025-J
- Sam Huckaba and Craig Huneke, Powers of ideals having small analytic deviation, Amer. J. Math. 114 (1992), no. 2, 367–403. MR 1156570, DOI 10.2307/2374708
- Craig Huneke, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), no. 1, 121–137. MR 638557
- Craig Huneke, Symbolic powers of prime ideals and special graded algebras, Comm. Algebra 9 (1981), no. 4, 339–366. MR 605026, DOI 10.1080/00927878108822586
- Craig Huneke, The primary components of and integral closures of ideals in $3$-dimensional regular local rings, Math. Ann. 275 (1986), no. 4, 617–635. MR 859334, DOI 10.1007/BF01459141
- Craig Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc. 277 (1983), no. 2, 739–763. MR 694386, DOI 10.1090/S0002-9947-1983-0694386-5
- Craig Huneke and Judith D. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), no. 2, 481–500. MR 943272, DOI 10.1016/0021-8693(88)90274-8
- Craig Huneke and Bernd Ulrich, Residual intersections, J. Reine Angew. Math. 390 (1988), 1–20. MR 953673, DOI 10.1515/crll.1988.390.1
- Ngô Việt Trung and Shin Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra 17 (1989), no. 12, 2893–2922. MR 1030601, DOI 10.1080/00927878908823885
- Andrew R. Kustin, Matthew Miller, and Bernd Ulrich, Generating a residual intersection, J. Algebra 146 (1992), no. 2, 335–384. MR 1152909, DOI 10.1016/0021-8693(92)90072-T
- Joseph Lipman and Bernard Teissier, Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), no. 1, 97–116. MR 600418
- Jacob Matijevic and Paul Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ. 14 (1974), 125–128. MR 340243, DOI 10.1215/kjm/1250523283
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Stephen McAdam, Finite coverings by ideals, Ring theory (Proc. Conf., Univ. Oklahoma, Norman, Okla., 1973) Lecture Notes in Pure and Applied Mathematics, Vol. 7, Dekker, New York, 1974, pp. 163–171. MR 0332749 M. Morales and A. Simis, Symbolic powers of monomial curves in ${\mathbb {P}^3}$ lying on a quadric, preprint.
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
- D. Rees, On a problem of Zariski, Illinois J. Math. 2 (1958), 145–149. MR 95843
- D. Rees, Two classical theorems of ideal theory, Proc. Cambridge Philos. Soc. 52 (1956), 155–157. MR 74386, DOI 10.1017/s0305004100031091
- D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), 24–28. MR 126465, DOI 10.1112/jlms/s1-36.1.24
- Judith D. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ. 17 (1977), no. 1, 19–21. MR 450259, DOI 10.1215/kjm/1250522807
- Peter Schenzel, Examples of Gorenstein domains and symbolic powers of monomial space curves, J. Pure Appl. Algebra 71 (1991), no. 2-3, 297–311. MR 1117640, DOI 10.1016/0022-4049(91)90153-S
- A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), no. 2, 203–224. MR 610474, DOI 10.2307/2374214
- Richard G. Swan, Serre’s problem, Conference on Commutative Algebra—1975 (Queen’s Univ., Kingston, Ont., 1975) Queen’s Papers on Pure and Applied Math., No. 42, Queen’s Univ., Kingston, Ont., 1975, pp. 1–60. MR 0396531
- Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93–101. MR 514892
- J. K. Verma, Rees algebras with minimal multiplicity, Comm. Algebra 17 (1989), no. 12, 2999–3024. MR 1030606, DOI 10.1080/00927878908823890
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 373-402
- MSC: Primary 13A30; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9947-1993-1123455-7
- MathSciNet review: 1123455