The constrained least gradient problem in $\textbf {R}^ n$
HTML articles powered by AMS MathViewer
- by Peter Sternberg, Graham Williams and William P. Ziemer
- Trans. Amer. Math. Soc. 339 (1993), 403-432
- DOI: https://doi.org/10.1090/S0002-9947-1993-1126213-2
- PDF | Request permission
Abstract:
We consider the constrained least gradient problem \[ \inf \left \{ {\int _\Omega {|\nabla u|dx:u \in {C^{0,1}}(\bar \Omega ),\quad |\nabla u| \leq 1\;{\text {a.e.}},u = g\;{\text {on}}\;\partial \Omega } } \right \}\] which arises as the relaxation of a nonconvex problem in optimal design. We establish the existence of a solution by an explicit construction in which each level set is required to solve an obstacle problem. We also establish the uniqueness of solutions and discuss their structure.References
- E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268. MR 250205, DOI 10.1007/BF01404309
- Patricia Bauman and Daniel Phillips, A nonconvex variational problem related to change of phase, Appl. Math. Optim. 21 (1990), no. 2, 113–138. MR 1019397, DOI 10.1007/BF01445160
- Luis A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), no. 3-4, 155–184. MR 454350, DOI 10.1007/BF02392236
- L. A. Caffarelli and N. M. Rivière, Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 289–310. MR 412940
- Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 110078, DOI 10.1090/S0002-9947-1959-0110078-1
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Wendell H. Fleming and Raymond Rishel, An integral formula for total gradient variation, Arch. Math. (Basel) 11 (1960), 218–222. MR 114892, DOI 10.1007/BF01236935
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682, DOI 10.1007/978-1-4684-9486-0
- Marvin J. Greenberg and John R. Harper, Algebraic topology, Mathematics Lecture Note Series, vol. 58, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1981. A first course. MR 643101
- David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 567696
- Robert Kohn and Gilbert Strang, The constrained least gradient problem, Nonclassical continuum mechanics (Durham, 1986) London Math. Soc. Lecture Note Ser., vol. 122, Cambridge Univ. Press, Cambridge, 1987, pp. 226–243. MR 926504, DOI 10.1017/CBO9780511662911.015 —, Fibered structures in optimal design, Theory of Ordinary and Partial Differential Equations (B. D. Sleeman and R. J. Jarvis, eds.), Longman, 1988.
- Robert V. Kohn and Gilbert Strang, Optimal design and relaxation of variational problems. I, Comm. Pure Appl. Math. 39 (1986), no. 1, 113–137. MR 820342, DOI 10.1002/cpa.3160390107
- Umberto Massari and Mario Miranda, Minimal surfaces of codimension one, North-Holland Mathematics Studies, vol. 91, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemática [Mathematical Notes], 95. MR 795963
- Harold R. Parks and William P. Ziemer, Jacobi fields and regularity of functions of least gradient, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 4, 505–527. MR 808421 S. Saks, Theory of the integral, PWN, Warsaw, 1937.
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- Leon Simon, A strict maximum principle for area minimizing hypersurfaces, J. Differential Geom. 26 (1987), no. 2, 327–335. MR 906394
- Peter Sternberg, Graham Williams, and William P. Ziemer, Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35–60. MR 1172906
- Peter Sternberg, William P. Ziemer, and Graham Williams, $C^{1,1}$-regularity of constrained area minimizing hypersurfaces, J. Differential Equations 94 (1991), no. 1, 83–94. MR 1133542, DOI 10.1016/0022-0396(91)90104-H
- Italo Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector, J. Reine Angew. Math. 334 (1982), 27–39. MR 667448, DOI 10.1515/crll.1982.334.27
- Italo Tamanini, Il problema della capillarità su domini non regolari, Rend. Sem. Mat. Univ. Padova 56 (1976), 169–191 (1978) (Italian). MR 483992
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 403-432
- MSC: Primary 49Q20
- DOI: https://doi.org/10.1090/S0002-9947-1993-1126213-2
- MathSciNet review: 1126213