Some complete $\Sigma ^ 1_ 2$ sets in harmonic analysis
HTML articles powered by AMS MathViewer
- by Howard Becker, Sylvain Kahane and Alain Louveau
- Trans. Amer. Math. Soc. 339 (1993), 323-336
- DOI: https://doi.org/10.1090/S0002-9947-1993-1129434-8
- PDF | Request permission
Abstract:
We prove that several specific pointsets are complete $\Sigma _2^1$ (complete PCA). For example, the class of ${N_0}$-sets, which is a hereditary class of thin sets that occurs in harmonic analysis, is a pointset in the space of compact subsets of the unit circle; we prove that this pointset is complete $\Sigma _2^1$. We also consider some other aspects of descriptive set theory, such as the nonexistence of Borel (and consistently with ${\text {ZFC}}$, the nonexistence of universally measurable) uniformizing functions for several specific relations. For example, there is no Borel way (and consistently, no measurable way) to choose for each ${N_0}$-set, a trigonometric series witnessing that it is an ${N_0}$-set.References
- Jean Arbault, Sur l’ensemble de convergence absolue d’une série trigonométrique, Bull. Soc. Math. France 80 (1952), 253–317 (French). MR 55476, DOI 10.24033/bsmf.1434
- N. K. Bary, A treatise on trigonometric series. Vols. I, II, A Pergamon Press Book, The Macmillan Company, New York, 1964. Authorized translation by Margaret F. Mullins. MR 0171116
- Howard Becker, Pointwise limits of subsequences and $\Sigma ^1_2$ sets, Fund. Math. 128 (1987), no. 3, 159–170. MR 922568, DOI 10.4064/fm-128-3-159-170
- Howard Becker, Descriptive set-theoretic phenomena in analysis and topology, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 1–25. MR 1233807, DOI 10.1007/978-1-4613-9754-0_{1}
- John P. Burgess, Classical hierarchies from a modern standpoint. I. $C$-sets, Fund. Math. 115 (1983), no. 2, 81–95. MR 699874, DOI 10.4064/fm-115-2-81-95
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Jean-Pierre Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York, 1970 (French). MR 0275043, DOI 10.1007/978-3-662-59158-1
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR 0160065
- Sylvain Kahane, Ensembles de convergence absolue, ensembles de Dirichlet faibles et $\uparrow$-idéaux, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 355–357 (French, with English summary). MR 1046511
- Sylvain Kahane, Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), no. 2, 186–223. MR 1208819
- R. Kaufman, Topics on analytic sets, Fund. Math. 139 (1991), no. 3, 215–229. MR 1149414, DOI 10.4064/fm-139-3-215-229
- Alexander S. Kechris, The descriptive set theory of $\sigma$-ideals of compact sets, Logic Colloquium ’88 (Padova, 1988) Stud. Logic Found. Math., vol. 127, North-Holland, Amsterdam, 1989, pp. 117–138. MR 1015324, DOI 10.1016/S0049-237X(08)70267-2
- Alexander S. Kechris and Alain Louveau, Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, vol. 128, Cambridge University Press, Cambridge, 1987. MR 953784, DOI 10.1017/CBO9780511758850
- A. S. Kechris, A. Louveau, and W. H. Woodin, The structure of $\sigma$-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), no. 1, 263–288. MR 879573, DOI 10.1090/S0002-9947-1987-0879573-9
- Alexander S. Kechris and Russell Lyons, Ordinal rankings on measures annihilating thin sets, Trans. Amer. Math. Soc. 310 (1988), no. 2, 747–758. MR 951888, DOI 10.1090/S0002-9947-1988-0951888-6
- Thomas William Körner, Some results on Kronecker, Dirichlet and Helson sets, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 2, 219–324 (1971) (English, with French summary). MR 284771, DOI 10.5802/aif.355
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- L.-Ȧ. Lindahl and F. Poulsen (eds.), Thin sets in harmonic analysis, Lecture Notes in Pure and Applied Mathematics, Vol. 2, Marcel Dekker, Inc., New York, 1971. Seminars held at Institute Mittag-Leffler, Univ. Stockholm, Stockholm, 1969–1970. MR 0393993
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709 V. V. Nemytzkii, On certain classes of linear sets in connection with the absolute convergence of trigonometric series (in Russian with French summary), Mat. Sb. 33 (1926), 5-32. A. Rajchman, Sur l’unicité du développement trigonométrique, Fund. Math. 3 (1922), 287-301.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 323-336
- MSC: Primary 04A15; Secondary 03E35, 43A46
- DOI: https://doi.org/10.1090/S0002-9947-1993-1129434-8
- MathSciNet review: 1129434