Classification of the Tor-algebras of codimension four almost complete intersections
HTML articles powered by AMS MathViewer
- by Andrew R. Kustin
- Trans. Amer. Math. Soc. 339 (1993), 61-85
- DOI: https://doi.org/10.1090/S0002-9947-1993-1132435-7
- PDF | Request permission
Abstract:
Let $(R,m,k)$ be a local ring in which $2$ is a unit. Assume that every element of $k$ has a square root in $k$. We classify the algebras $\operatorname {Tor}_ \bullet ^R(R/J,k)$ as $J$ varies over all grade four almost complete intersection ideals in $R$ . The analogous classification has already been found when $J$ varies over all grade four Gorenstein ideals [21], and when $J$ varies over all ideals of grade at most three [5, 30]. The present paper makes use of the classification, in [21], of the Tor-algebras of codimension four Gorenstein rings, as well as the (usually nonminimal) ${\text {DG}}$-algebra resolution of a codimension four almost complete intersection which is produced in [25 and 26].References
- E. F. Assmus Jr., On the homology of local rings, Illinois J. Math. 3 (1959), 187–199. MR 103907
- Luchezar L. Avramov, Homological asymptotics of modules over local rings, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 33–62. MR 1015512, DOI 10.1007/978-1-4612-3660-3_{3}
- David Eisenbud and Craig Huneke (eds.), Free resolutions in commutative algebra and algebraic geometry, Research Notes in Mathematics, vol. 2, Jones and Bartlett Publishers, Boston, MA, 1992. Papers from the conference held in Sundance, Utah, May 1990. MR 1165313
- L. L. Avramov and E. S. Golod, The homology of algebra of the Koszul complex of a local Gorenstein ring, Mat. Zametki 9 (1971), 53–58 (Russian). MR 279157
- Luchezar L. Avramov, Andrew R. Kustin, and Matthew Miller, Poincaré series of modules over local rings of small embedding codepth or small linking number, J. Algebra 118 (1988), no. 1, 162–204. MR 961334, DOI 10.1016/0021-8693(88)90056-7
- David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, DOI 10.2307/2373926
- Hara Charalambous, E. Graham Evans, and Matthew Miller, Betti numbers for modules of finite length, Proc. Amer. Math. Soc. 109 (1990), no. 1, 63–70. MR 1013967, DOI 10.1090/S0002-9939-1990-1013967-1
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7 A. Grothendieck, Eléments de géométrie algébrique III, Inst. Hautes. Études Sci. Publ. Math. 11 (1961).
- Craig Huneke and Bernd Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), no. 6, 1265–1303 (1986). MR 815763, DOI 10.2307/2374407
- Craig Huneke and Bernd Ulrich, The structure of linkage, Ann. of Math. (2) 126 (1987), no. 2, 277–334. MR 908149, DOI 10.2307/1971402
- Carl Jacobsson, Andrew R. Kustin, and Matthew Miller, The Poincaré series of a codimension four Gorenstein ring is rational, J. Pure Appl. Algebra 38 (1985), no. 2-3, 255–275. MR 814181, DOI 10.1016/0022-4049(85)90013-1 S. Kim, Projective resolutions of generic order ideals, Ph.D. thesis, University of Illinois, Urbana, 1988.
- Andrew Kustin, New examples of rigid Gorenstein unique factorization domains, Comm. Algebra 12 (1984), no. 19-20, 2409–2439. MR 755922, DOI 10.1080/00927878408823115
- Andrew R. Kustin, The minimal free resolutions of the Huneke-Ulrich deviation two Gorenstein ideals, J. Algebra 100 (1986), no. 1, 265–304. MR 839583, DOI 10.1016/0021-8693(86)90078-5
- Andrew R. Kustin, Gorenstein algebras of codimension four and characteristic two, Comm. Algebra 15 (1987), no. 11, 2417–2429. MR 912779, DOI 10.1080/00927878708823544
- Andrew R. Kustin and Matthew Miller, Algebra structures on minimal resolutions of Gorenstein rings of embedding codimension four, Math. Z. 173 (1980), no. 2, 171–184. MR 583384, DOI 10.1007/BF01159957
- Andrew Kustin and Matthew Miller, Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math. Soc. 270 (1982), no. 1, 287–307. MR 642342, DOI 10.1090/S0002-9947-1982-0642342-4
- Andrew R. Kustin and Matthew Miller, Multiplicative structure on resolutions of algebras defined by Herzog ideals, J. London Math. Soc. (2) 28 (1983), no. 2, 247–260. MR 713381, DOI 10.1112/jlms/s2-28.2.247
- Andrew R. Kustin and Matthew Miller, Tight double linkage of Gorenstein algebras, J. Algebra 95 (1985), no. 2, 384–397. MR 801274, DOI 10.1016/0021-8693(85)90110-3
- Andrew R. Kustin and Matthew Miller, Classification of the Tor-algebras of codimension four Gorenstein local rings, Math. Z. 190 (1985), no. 3, 341–355. MR 806892, DOI 10.1007/BF01215134
- Andrew R. Kustin, Matthew Miller, and Bernd Ulrich, Linkage theory for algebras with pure resolutions, J. Algebra 102 (1986), no. 1, 199–228. MR 853240, DOI 10.1016/0021-8693(86)90137-7
- Andrew R. Kustin, Matthew Miller, and Bernd Ulrich, Generating a residual intersection, J. Algebra 146 (1992), no. 2, 335–384. MR 1152909, DOI 10.1016/0021-8693(92)90072-T
- Matthew Miller, Multiplicative structures on finite free resolutions, Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990) Res. Notes Math., vol. 2, Jones and Bartlett, Boston, MA, 1992, pp. 35–46. MR 1165316 S. Palmer, Algebra structures on resolutions of rings defined by grade four almost complete intersections, Ph.D. thesis, University of South Carolina, 1990.
- Susan Palmer Slattery, Algebra structures on resolutions of rings defined by grade four almost complete intersections, J. Algebra 159 (1993), no. 1, 1–46. MR 1231201, DOI 10.1006/jabr.1993.1144
- Jean-Pierre Serre, Sur la dimension homologique des anneaux et des modules noethériens, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, Science Council of Japan, Tokyo, 1956, pp. 175–189 (French). MR 0086071
- Hema Srinivasan, Minimal algebra resolutions for cyclic modules defined by Huneke-Ulrich ideals, J. Algebra 137 (1991), no. 2, 433–472. MR 1094252, DOI 10.1016/0021-8693(91)90101-D
- John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27. MR 86072
- Jerzy Weyman, On the structure of free resolutions of length $3$, J. Algebra 126 (1989), no. 1, 1–33. MR 1023284, DOI 10.1016/0021-8693(89)90318-9
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 61-85
- MSC: Primary 13D03; Secondary 13C05, 13C40
- DOI: https://doi.org/10.1090/S0002-9947-1993-1132435-7
- MathSciNet review: 1132435