Calcul du spectre d’une nilvariété de rang deux et applications
HTML articles powered by AMS MathViewer
- by Hubert Pesce
- Trans. Amer. Math. Soc. 339 (1993), 433-461
- DOI: https://doi.org/10.1090/S0002-9947-1993-1145731-4
- PDF | Request permission
Abstract:
Résumé. On calcule, en utilisant la théorie des orbites de Kirillov, le spectre d’une nilvariété compacte de rang deux. Puis on utilise ce calcul pour étudier et caractériser les déformations isospectrales de ces variétés.References
- Lionel Bérard-Bergery and Jean-Pierre Bourguignon, Laplacians and Riemannian submersions with totally geodesic fibres, Illinois J. Math. 26 (1982), no. 2, 181–200. MR 650387
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313, DOI 10.1007/BFb0064643
- Dennis DeTurck, Herman Gluck, Carolyn Gordon, and David Webb, You cannot hear the mass of a homology class, Comment. Math. Helv. 64 (1989), no. 4, 589–617. MR 1022998, DOI 10.1007/BF02564696
- Dennis M. DeTurck and Carolyn S. Gordon, Isospectral deformations. II. Trace formulas, metrics, and potentials, Comm. Pure Appl. Math. 42 (1989), no. 8, 1067–1095. With an appendix by Kyung Bai Lee. MR 1029118, DOI 10.1002/cpa.3160420803
- Carolyn S. Gordon, The Laplace spectra versus the length spectra of Riemannian manifolds, Nonlinear problems in geometry (Mobile, Ala., 1985) Contemp. Math., vol. 51, Amer. Math. Soc., Providence, RI, 1986, pp. 63–80. MR 848934, DOI 10.1090/conm/051/848934
- Carolyn S. Gordon and Edward N. Wilson, Isospectral deformations of compact solvmanifolds, J. Differential Geom. 19 (1984), no. 1, 241–256. MR 739790
- Carolyn S. Gordon and Edward N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (1986), no. 2, 253–271. MR 837583, DOI 10.1307/mmj/1029003354 F. D. Greenleaf and L. Corwin, Representation of nilpotent Lie groups and their applications. 1: Basic theory and examples, Cambridge Stud. in Adv. Math., vol. 18, 1989. A. Ikeda, Isospectral problem for spherical space forms, Spectra of Riemannian Manifolds (M. Berger, S. Murakami, and T. Ochiai, eds.), Kaigai Publication, 1983, pp. 57-63.
- Yoshiyuki Kitaoka, Positive definite quadratic forms with the same representation numbers, Arch. Math. (Basel) 28 (1977), no. 5, 495–497. MR 441864, DOI 10.1007/BF01223956 A. I. Mal’cev On a class of homogeneous space, Amer. Math. Soc. Transl. (1) 9 (1962), 276-307.
- J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. MR 162204, DOI 10.1073/pnas.51.4.542
- Calvin C. Moore, Representations of solvable and nilpotent groups and harmonic analysis on nil and solvmanifolds, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 3–44. MR 0385001
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146–182. MR 181701, DOI 10.2307/1970567 H. Ouyang, Ph.D. Thesis, Washington University, St. Louis, 1991.
- Hubert Pesce, Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 515–538 (French, with French summary). MR 1191734, DOI 10.24033/asens.1657 L. Pukansky, Leçons sur les représentations de groupe, Dunod, Paris, 1966.
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1
- Toshikazu Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), no. 1, 169–186. MR 782558, DOI 10.2307/1971195
- Marie-France Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1980), no. 1, 21–32 (French). MR 584073, DOI 10.2307/1971319
- Scott Wolpert, The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc. 244 (1978), 313–321. MR 514879, DOI 10.1090/S0002-9947-1978-0514879-9
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 433-461
- MSC: Primary 58G25; Secondary 22E27
- DOI: https://doi.org/10.1090/S0002-9947-1993-1145731-4
- MathSciNet review: 1145731