## Approximation of approximate fibrations by bundle maps

HTML articles powered by AMS MathViewer

- by Y. H. Im PDF
- Trans. Amer. Math. Soc.
**339**(1993), 279-295 Request permission

## Abstract:

In this paper, we give some conditions under which approximate fibrations can be approximated by locally trivial bundle maps.## References

- Guy Allaud and Edward Fadell,
*A fiber homotopy extension theorem*, Trans. Amer. Math. Soc.**104**(1962), 239–251. MR**174057**, DOI 10.1090/S0002-9947-1962-0174057-0 - Douglas R. Anderson,
*The Whitehead torsion of a fiber-homotopy equivalence*, Michigan Math. J.**21**(1974), 171–180. MR**343283** - Jean Cerf,
*La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie*, Inst. Hautes Études Sci. Publ. Math.**39**(1970), 5–173 (French). MR**292089** - T. A. Chapman,
*Lectures on Hilbert cube manifolds*, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR**0423357** - T. A. Chapman,
*Approximating maps into fiber bundles by homeomorphisms*, Rocky Mountain J. Math.**10**(1980), no. 2, 333–350. MR**575307**, DOI 10.1216/RMJ-1980-10-2-333 - T. A. Chapman,
*Approximation results in topological manifolds*, Mem. Amer. Math. Soc.**34**(1981), no. 251, iii+64. MR**634341**, DOI 10.1090/memo/0251 - T. A. Chapman and Steve Ferry,
*Constructing approximate fibrations*, Trans. Amer. Math. Soc.**276**(1983), no. 2, 757–774. MR**688976**, DOI 10.1090/S0002-9947-1983-0688976-3 - D. S. Coram and P. F. Duvall Jr.,
*Approximate fibrations*, Rocky Mountain J. Math.**7**(1977), no. 2, 275–288. MR**442921**, DOI 10.1216/RMJ-1977-7-2-275 - R. J. Daverman,
*Decompositions of manifolds into codimension one submanifolds*, Compositio Math.**55**(1985), no. 2, 185–207. MR**795714** - R. J. Daverman,
*Submanifold decompositions that induce approximate fibrations*, Topology Appl.**33**(1989), no. 2, 173–184. MR**1020279**, DOI 10.1016/S0166-8641(89)80006-9
—, $PL$ - R. J. Daverman and J. J. Walsh,
*Decompositions into submanifolds that yield generalized manifolds*, Topology Appl.**26**(1987), no. 2, 143–162. MR**896870**, DOI 10.1016/0166-8641(87)90065-4 - Albrecht Dold and Richard Lashof,
*Principal quasi-fibrations and fibre homotopy equivalence of bundles*, Illinois J. Math.**3**(1959), 285–305. MR**101521** - D. B. A. Epstein,
*Curves on $2$-manifolds and isotopies*, Acta Math.**115**(1966), 83–107. MR**214087**, DOI 10.1007/BF02392203 - Edward Fadell,
*On fiber homotopy equivalence*, Duke Math. J.**26**(1959), 699–706. MR**109347** - F. T. Farrell,
*The obstruction to fibering a manifold over a circle*, Bull. Amer. Math. Soc.**73**(1967), 737–740. MR**215310**, DOI 10.1090/S0002-9904-1967-11854-8 - F. T. Farrell and W.-C. Hsiang,
*$H$-cobordant manifolds are not necessarily homeomorphic*, Bull. Amer. Math. Soc.**73**(1967), 741–744. MR**215311**, DOI 10.1090/S0002-9904-1967-11856-1 - F. T. Farrell and L. E. Jones,
*A topological analogue of Mostow’s rigidity theorem*, J. Amer. Math. Soc.**2**(1989), no. 2, 257–370. MR**973309**, DOI 10.1090/S0894-0347-1989-0973309-4 - R. E. Goad,
*Approximate torus fibrations of high dimensional manifolds can be approximated by torus bundle projections*, Trans. Amer. Math. Soc.**258**(1980), no. 1, 87–97. MR**554320**, DOI 10.1090/S0002-9947-1980-0554320-2 - D. H. Gottlieb,
*A certain subgroup of the fundamental group*, Amer. J. Math.**87**(1965), 840–856. MR**189027**, DOI 10.2307/2373248 - Mary-Elizabeth Hamstrom,
*The space of homeomorphisms on a torus*, Illinois J. Math.**9**(1965), 59–65. MR**170334** - Mary-Elizabeth Hamstrom,
*Homotopy groups of the space of homeomorphisms on a $2$-manifold*, Illinois J. Math.**10**(1966), 563–573. MR**202140** - L. S. Husch,
*Approximating approximate fibrations by fibrations*, Canadian J. Math.**29**(1977), no. 5, 897–913. MR**500990**, DOI 10.4153/CJM-1977-091-2 - Robion C. Kirby and Laurence C. Siebenmann,
*Foundational essays on topological manifolds, smoothings, and triangulations*, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR**0645390** - F. Laudenbach,
*Sur les $2$-sphères d’une variété de dimension $3$*, Ann. of Math. (2)**97**(1973), 57–81 (French). MR**314054**, DOI 10.2307/1970877 - Sibe Mardešić and Jack Segal,
*Shape theory*, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR**676973** - Frank Quinn,
*Isotopy of $4$-manifolds*, J. Differential Geom.**24**(1986), no. 3, 343–372. MR**868975** - L. C. Siebenmann,
*A total Whitehead torsion obstruction to fibering over the circle*, Comment. Math. Helv.**45**(1970), 1–48. MR**287564**, DOI 10.1007/BF02567315 - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112** - James Stasheff,
*A classification theorem for fibre spaces*, Topology**2**(1963), 239–246. MR**154286**, DOI 10.1016/0040-9383(63)90006-5 - Norman Steenrod,
*The topology of fibre bundles*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. Reprint of the 1957 edition; Princeton Paperbacks. MR**1688579** - Friedhelm Waldhausen,
*On irreducible $3$-manifolds which are sufficiently large*, Ann. of Math. (2)**87**(1968), 56–88. MR**224099**, DOI 10.2307/1970594 - C. T. C. Wall,
*Surgery on compact manifolds*, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR**0431216** - Heiner Zieschang, Elmar Vogt, and Hans-Dieter Coldewey,
*Surfaces and planar discontinuous groups*, Lecture Notes in Mathematics, vol. 835, Springer, Berlin, 1980. Translated from the German by John Stillwell. MR**606743**

*maps with manifold fibers*, preprint.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**339**(1993), 279-295 - MSC: Primary 55R65; Secondary 57N15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1179397-4
- MathSciNet review: 1179397