$\Delta$-sets
HTML articles powered by AMS MathViewer
- by R. W. Knight
- Trans. Amer. Math. Soc. 339 (1993), 45-60
- DOI: https://doi.org/10.1090/S0002-9947-1993-1196219-6
- PDF | Request permission
Abstract:
A model of ${\text {ZFC}}$ is constructed in which there exists a subset of the Moore plane that is countably paracompact but not normal. The method used in the construction is forcing using uncountable sets of finite partial functions, ${\omega _1}$ and ${\omega _2}$ are shown to be preserved using a fusion lemma.References
- W. G. Fleissner, Current research on $Q$ sets, Topology, Vol. I, II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 413–431. MR 588793
- William G. Fleissner and Arnold W. Miller, On $Q$ sets, Proc. Amer. Math. Soc. 78 (1980), no. 2, 280–284. MR 550513, DOI 10.1090/S0002-9939-1980-0550513-4
- T. Jech, Multiple forcing, Cambridge Tracts in Mathematics, vol. 88, Cambridge University Press, Cambridge, 1986. MR 895139
- Thomas Jech and Karel Prikry, Cofinality of the partial ordering of functions from $\omega _{1}$ into $\omega$ under eventual domination, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 25–32. MR 727077, DOI 10.1017/S0305004100061272 R. W. Knight, Generalized tangent-disc spaces and $Q$-sets, Thesis, Univ. of Oxford, 1989.
- Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI 10.1007/BF02392416
- David J. Lutzer, Pixley-Roy topology, Topology Proc. 3 (1978), no. 1, 139–158 (1979). MR 540485
- Teodor C. Przymusiński, Normality and separability of Moore spaces, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975–1976) Academic Press, New York, 1977, pp. 325–337. MR 0448310
- G. M. Reed, On normality and countable paracompactness, Fund. Math. 110 (1980), no. 2, 145–152. MR 600588, DOI 10.4064/fm-110-2-145-152 J. Steprāns, Some results in set theory, Ph. D. Thesis, Univ. of Toronto, 1982.
- Hidenori Tanaka, Normality and hereditary countable paracompactness of Pixley-Roy hyperspaces, Fund. Math. 126 (1986), no. 3, 201–208. MR 882429, DOI 10.4064/fm-126-3-201-208
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 45-60
- MSC: Primary 54A35; Secondary 03E35, 54D20
- DOI: https://doi.org/10.1090/S0002-9947-1993-1196219-6
- MathSciNet review: 1196219