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GEOMETRIC CURVATURE BOUNDS
IN RIEMANNIAN MANIFOLDS WITH BOUNDARY

STEPHANIE B. ALEXANDER, I. DAVID BERG, AND RICHARD L. BISHOP

Abstract. An Alexandrov upper bound on curvature for a Riemannian man-

ifold with boundary is proved to be the same as an upper bound on sectional

curvature of interior sections and of sections of the boundary which bend away

from the interior. As corollaries those same sectional curvatures are related to

estimates for convexity and conjugate radii; the Hadamard-Cartan theorem and

Yau's isoperimetric inequality for spaces with negative curvature are general-

ized.

1. Introduction

The main theorem of this paper characterizes Riemannian manifolds with

boundary that have curvature bounded above in Alexandrov's sense by a pre-

assigned constant. When the boundary is empty, this theorem corresponds to

Alexandrov's basic theorem equating upper bounds on Alexandrov curvature to

those on sectional curvature [ABN]. Thus Riemannian manifolds with bound-

ary give rise to a large class of examples of metric spaces of curvature bounded
above but not (since geodesies can bifurcate) bounded below. The character-

ization theorem leads to best possible global theorems on cut, conjugate and
convexity radii in Riemannian manifolds with boundary. For example, the fol-

lowing intuitively appealing fact is a consequence of the characterization the-

orem and a theorem of Gromov on hyperbolic spaces: In a complete, simply

connected, 3-dimensional space whose interior has nonpositive sectional cur-
vature and whose boundary is everywhere saddle-shaped, any two points are

joined by a unique geodesic.

The technique of proof of the characterization theorem is itself of interest.

For example, it enables us to extend a linear isoperimetric inequality of Yau to
manifolds with boundary.

A geodesic will be a locally distance-realizing curve parametrized proportion-
ally to arclength; thus geodesies in manifolds with boundary can bend and bi-

furcate. A space has curvature bounded above by K, in the sense of Alexandrov,

if every point has a neighborhood in which any minimizing geodesic triangle

with vertices in the neighborhood has perimeter less than 2n/\/K (if K > 0),
and has each of its angles at most equal to the corresponding angle in a triangle
with the same sidelengths in the standard surface S& of constant curvature
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K [Avl]. Equivalently, as Alexandrov showed, the latter condition may be re-

placed by various others, for example, the "CAT*" condition that each distance

between points on the triangle is at most equal to the distance in Sk between

the corresponding points on the comparison triangle, or the "CAT" condition

that each distance from a vertex to a point on the opposite side is at most equal

to the corresponding distance in Sk ([Avl]; see also [Bn, Tv, ABN, Gv2]).

Alexandrov worked in the general class of geodesic metric spaces, namely, those
in which any two points are joined by a distance realizing curve, and used a gen-

eralized definition of angle. In this paper, we consider the subclass consisting

of complete, connected Riemannian manifolds with boundary. Here angles in

the Alexandrov sense coincide with Riemannian angles, and curvature bounded

above by 0 is equivalent to local convexity, whereby every point has a neigh-

borhood in which the distance d(y(t), o(t)) is convex for any two geodesies y
and a.

Characterization Theorem. Let M be a Riemannian manifold with boundary

B. Then the following two conditions are equivalent:

1. M has curvature bounded above by K in Alexandrov's sense.

2. The sectional curvatures of the interior of M and the outward sectional

curvatures of the boundary B do not exceed K (where an outward sectional

curvature of B is one that corresponds to a tangent section all of whose normal
curvature vectors point outward).

This is a seemingly natural criterion, which was stated by Gromov for K = 0
in [Gvl]. However, one should not expect this sharp bound for Alexandrov cur-

vature to follow in any routine manner from the sectional curvature bounds. It

is even a problem to establish that the Alexandrov curvature is locally bounded

above. A weaker fact than this, namely that geodesies in manifolds with bound-

ary are locally uniquely determined by their endpoints, was proved in [ABB1]

and, independently, was the main theorem of [Si]. A characteristic difficulty,
well known to workers in variational inequalities, lies in the possibility of un-

bounded switching behavior, which may, for example, produce Cantor coinci-

dence sets between a geodesic and the boundary. Our approach, here and in

[ABB1], has been to develop a geometric calculus of geodesic variations and
Jacobi fields that works regardless of underlying pathology. One aim of this

paper is to lay out these methods in a form convenient for others wishing to

investigate Riemannian manifolds with boundary.

The characterization theorem places manifolds with boundary in the setting

of Alexandrov's theory of spaces of curvature bounded above, and its recent

extensions within Gromov's theory of hyperbolic groups. For example, by a

theorem of Gromov, the Hadamard-Cartan theorem extends to geodesic metric
spaces with curvature bounded above by 0 ([Gvl, Gv2]; see proof in [ArBp

or Bn]). Thus the characterization theorem immediately implies the following

Hadamard-Cartan theorem for manifolds with boundary:

Corollary 1. If for a simply-connected, complete, connected Riemannian mani-

fold with boundary, the sectional curvatures of the interior and the outward sec-

tional curvatures of the boundary are nonpositive, then any two points are joined

by a unique geodesic, and the distance between any two geodesies is convex.

For positive curvature bounds, we have a related result. Let N(p, C) be the
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set of points, each of which can be joined to p by a unique minimizing geodesic

of length less than C. The characterization theorem and Alexandrov's compar-
ison theory yield the following theorem on convexity of distance functions. We

remark that a difficult direct proof of convexity preceded the characterization

theorem, and is now obviated by it. Throughout, we set 1/y/K = 00 if K < 0.

Corollary 2. If for a complete Riemannian manifold with boundary, M, the

sectional curvatures of the interior and the outward sectional curvatures of the

boundary are no greater than K, then N(p, %¡2\fK) is open in M and the

distance function from p is convex on N(p,n/2\/K).

The characterization theorem will be proved by establishing the equivalence

of conditions 1 and 2 with a third condition, namely, the üf-convexity of nor-

mal Jacobi fields. This method leads to a proof of the following isoperimetric
inequality, due to Yau in the case of Riemannian manifolds [Yu].

Theorem 2. If for a simply-connected, complete, connected, n-dimensional Rie-

mannian manifold with boundary, M, the sectional curvatures of the interior

and the outward sectional curvatures of the boundary are no greater than K < 0,

then the volume and perimeter of any measurable set S in M satisfy

(n-l)yf-KV(S)<P(S).

Theorem 2 does not seem to be accessible by standard arguments. Specifi-

cally, one might ask whether M possesses an extension to a complete Riemann-

ian manifold without boundary and with curvature no greater than K + e, for

arbitrary e. While we do not know that this is false, we have verified that our

assumptions do not allow this degree of curvature control among extensions

obtained in the standard ways that suggest themselves, namely, by collaring the

boundary and seeking either a conformai factor or a warping function depend-

ing on the distance from the boundary. For related computations, see [GIMr,

pp. 196-198].
In what follows, M always denotes a complete, C°° Riemannian manifold

with C°° boundary B.
We thank M. Gromov for raising with us the question of proving the char-

acterization theorem using the methods of [ABB1].

2. JACOBI FIELDS

A vector field J along a geodesic y in M will be called a Jacobi field if

there is a sequence of geodesies y¡ converging to y in the uniform topology,

and a sequence of positive numbers u¡ approaching 0 for which

(1) \\J\\ = limurxd(y,yi)

and the unit vector in the direction of J(t) is the limit of the initial unit

vectors of the minimizing geodesies from y(t) to y¡(t). (It makes no difference

whether these distances and minimizers are taken in M, in some Riemannian

extension N of M obtained by adding an outward collar along the boundary,

or in some Euclidean space in which N is isometrically immersed.) We say

that the parametrized sequence (y,, u¡) approaches y tangentially to J.
A Jacobi field J along y is K-convex it if satisfies the differential inequality

||/||" > -Kv2\\J\\, where v is the speed of y, in the following sense.  We
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interpret the inequality to mean, if K > 0, that on any parameter subinterval

of length less than n/v\/~K, the sinusoid asin(\fiKvt - b) that coincides with

\\J\\ at the endpoints is an upper bound for ||7||. If K < 0, we use the
appropriate linear function or hyperbolic sinusoid instead, with no bound on

the subinterval. In brief, the length of / is bounded above, on appropriate
subintervals, by the length of a normal Jacobi field in Sk having the same

endpoint lengths.
We begin by summarizing the existence, regularity and uniqueness properties

of geodesies and Jacobi fields in M ; except where otherwise noted, proofs may

be found in [ABB1].

Geodesic properties. Existence. Any two points of M axe joined by a minimiz-

ing geodesic [C-V].
Regularity. A geodesic is C1 and has one-sided acceleration everywhere. It

possesses nonvanishing two-sided acceleration only on open segments which lie

on the boundary B ; this acceleration is necessarily outwardly normal to B. The

acceleration fails to exist only at the countably many points where the geodesic

switches from being a boundary geodesic with nonvanishing acceleration to be-

ing a geodesic in the interior or vice versa. In particular, at an accumulation

point of such points, the acceleration exists and vanishes.

Uniqueness theorem. Each point of M possesses a neighborhood ofbipoint

uniqueness U, any two of whose points are joined by a unique minimizing

geodesic in M and by no other geodesic in U.
Convergence theorem. If a sequence of geodesies converges pointwise, then

the limit is a geodesic and the convergence is C1.

Jacobi field properties. Existence theorem. If a parametrized sequence of geo-

desies (y¡, u¡) approaches a geodesic y tangentially to well-defined vectors

at either endpoint, and if no subsequence approaches with infinite speed at

any intermediate point (i.e., if d(y(t), y¡(t)) < Cu¡), then some subsequence

approaches y tangentially to a Jacobi field.
Regularity theorem. A Jacobi field J is fc-convex for some sufficiently large

positive constant k . Moreover, J is continuous on the interior of its interval

of definition and ||/|| is upper semicontinuous at the endpoints. It follows from

A;-convexity and continuity that \\J\\ has the regularity properties of a convex

function on the interior of its domain. In particular, \\J\\ has left and right

derivatives everywhere; there are only countably many points where ||7||' fails

to exist and at these points \\J\\' has a positive jump; and ||/||" exists almost

everywhere.

Uniqueness. The existence and continuity of Jacobi fields are nontrivial, and

we do not not know a corresponding uniqueness theorem; it is possible, for all

we know, that different subsequences may produce more than one Jacobi field

attached to a given one-sided variation. However, it turns out that uniqueness

is immaterial to our arguments.
The purpose of this section is to prove the most difficult part of the charac-

terization theorem, namely, that for normal Jacobi fields the convexity constant
can be improved to K if all interior and outward boundary sectional curvatures

are at most K. (The restriction to normal Jacobi fields is unnecessary when
K > 0, since then the inclusion of a tangential summand, which is linear in
arclength (see §6), will only strengthen the A^-convexity inequality.)
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Proposition 1. The sectional curvatures of the interior and the outward sectional

curvatures of the boundary are at most K if and only if all normal Jacobi fields

are K-convex.

Proof. The essential step is, assuming the given sectional curvature bounds, to

verify .TY-convexity at points where y touches the boundary and has vanishing

acceleration. Indeed, where y lies in the interior of M, J is a Jacobi field of
the interior, and so K-convexity follows from the formula [BpCn, p. 177],

(2) ||/||"(0) = [-K(J)A(J, y')2\\J\\-x+A(J', /)2||/||-3](0).

Here, A(x,y) denotes the area of the parallelogram spanned by x and y.
Where a relatively open subsegment of y lies on the boundary and has nowhere

vanishing acceleration, J coincides with a Jacobi field of B, except possibly

at an endpoint of y ; this is because geodesies of M sufficiently close to y

contain segments lying on B arbitrarily close to the given segment. Thus K-

convexity follows from (2) and the fact that, by the curvature hypotheses and

the Gauss equation, the sectional curvature of B is at most K for every section

containing y'. At a point where y switches between a boundary segment with

nonvanishing acceleration and a segment in the interior, ||/|| is ÄT-convex on

both sides and ||7||' has a nonnegative jump, so ||/|| is AT-convex on an open

interval. So we only need to consider the remaining points of y, at all of which

the acceleration exists and vanishes.
Our method is to extend M to a Riemannian manifold N by adding an

outward collar along the boundary, and then to express the length of / as a limit

of difference quotients of displacements measured through N. This is allowable

because distance in M is linearly approximated by distance in TV" (in fact, the

difference is on the order of the cube of either one), so that (1) holds whether

d is distance in M or in N. The displacement function / measured through
N from y to a nearby geodesic is C1 and has one-sided second derivatives.
For any e > 0, we shall show that in some neighborhood of a point p at which

y lies on B and has vanishing acceleration, the displacement / satisfies, from

left and right, the inequality /" > —(K + e)f. Since \\J\\ is a limit of these
displacements with scale factors, it follows that p lies in an open segment on
which J is (K + e)-convex. Thus y is the union of open segments on which J

is either K-convex or (.K+ e)-convex. But then, since e is arbitrary, ||/|| must

be .ri-convex. (This is a somewhat delicate procedure since examples show that

/" > -Kfi may fail to hold for all of the finite displacements / in N.)
Let us specify the setting to which the problem has been reduced. We are

given e > 0 and a unitspeed geodesic y of M such that y'(0) is tangent to

B and y"(0) = 0. We wish to show that any geodesic o of M whose velocity

vectors are sufficiently close to y'(0) and whose displacement vectors through

N from y are sufficiently close to normal to y satisfies /" > -(K+e)fi, where

f(t) = dN(y(t),o(t)).
The displacement fi(t) is the length of the minimizing geodesic in N from

y(t) to a(t); for each t, we parametrize this geodesic by u £ [0, 1] with
constant speed. Let V(t, u) be the unit vector in the «-direction. Then /'
depends only on the inner products of V with the end velocities, by the first

variation formula in N,

f'(t) = (o'(t),V(t,l))-(y'(t),V(t,0)).
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Since y and o are C1, then V(t, 1) and V(t, 0) have continuous covariant

i-derivatives, V'(t, 1) and V'(t,0). Since y and a have left and right accel-
erations everywhere, the Liebnitz rule gives the left and right derivatives of /,

both of which we denote by /",

m f"(t) = (o"(t),V(t,l))-(y"(t),V(t,0))

1 ' +(a'(t),V'(t,l))-(y'(t),V'(t,0)).

For a fixed /, the expression (a'(t), V'(t ,1))- (y'(t), V'(t, 0)) has nothing to
do with the manifold with boundary M ; it would remain the same if y and

o were replaced by geodesies y and a of N having the same velocities at t.

Letting / denote the displacement in N between y and a, we thus have, for

this fixed value of t,

~fi"(t) = (o'(t),V'(t,l))-(y'(t),V'(t,0)).

The second variation formula in A^ implies

7"(t)>-fi(t) [ \\T^\\2K(T,V)du,
Jo

where T is the Jacobi field of N whose endpoint values are y'(t) and a'(t),

T1- is its normal component and K(T, V) is the corresponding sectional cur-

vature of N. We may arrange to work in a neighborhood in yV of y(0) so

small that the sectional curvatures there are no greater than K + ex , for any

given positive ex. Thus

j"(t)>-(K + ex)Afi(t)

where A is a bound for HF-1!!2 (an upper bound if K is nonnegative and a

lower bound if K + e is taken to be negative). For any given positive e2, if

o'(t) and y'(t) are sufficiently close to y'(0) and the displacement vector from

y(t) to o(t) is sufficiently close to normal to y, it follows that

fi"(t)>-(K + e2)fi(t).

Therefore, the above conditions guarantee, for all t,

(4) (o'(t), V'(t, I)) - (y'(t), V'(t, 0)) > -(K + e2)f(t).

To control the remaining terms of (3), namely (o"(t), V(t, I)) and (y"(t),

V(t, 0)), set a" = gZa and y" = hZ7, where Z is the outward unit nor-

mal to the boundary. Here g and h vanish at nonboundary points, and at

boundary points are nonnegative normal curvatures of B. Since h(0) = 0 by

assumption, and since normal curvatures vary continuously with boundary tan-

gent directions, g and h may be made arbitrarily small by choosing o'(t) and
y'(t) sufficiently close to y'(0). If y(t) and a(t) axe both on B, the factors
(Za(t), V(t, I)) and (Zy(t), V(t, 0)) measure the amount by which the angle

from Z to V deviates from a right angle, that is, the deviation of a secant
line of B away from the tangent planes at its endpoints. In a sufficiently small

neighborhood of y(0), each of these factors is bounded in absolute value by

bf(t), that is, by the displacement / times a constant b > 0 which depends
on the extrinsic curvature of B in N. Thus we may ensure

(5) (a" it), Vit, I)) - (fit), Vit, 0)) > -e3f(t)
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for any £3. If only one of y(t) and a(t) is on B, the effect is to eliminate one

of the left-hand terms in (5), while in the other term the angle between Z and

V shifts in a way that is desirable. For instance, if o(t) is in the interior of M
while y(t) is on B, then at y(t) we have (Zy(t), V(t, 0)) < bf(t). Thus (5)
holds in this case also. Combining (4) and (5) gives f"(t) > -(K+e2+ei)f(t),

thus completing the proof of .K-convexity of normal Jacobi fields.

It is easy to prove the converse, namely that AT-convexity implies the desired

sectional curvature bounds. Indeed, consider a unitspeed geodesic y of B for

which y'(0) lies in an outward plane section on which the second fundamental

form of B is definite. There is a variation of y through geodesies of B such

that the corresponding Jacobi field J is normal to y, has 7(0) nonvanish-

ing and in the section, and has J'(0) vanishing. Near y(0), the definiteness

condition implies that this variation consists of geodesies of M. Thus by as-
sumption, J is a AT-convex Jacobi field of M. Then formula (2) provides the

required link to the sectional curvature of B ; the second term on the right-
hand side of (2) vanishes because J'(0) = 0. The same argument, applied to

geodesic variations in the interior, shows that the sectional curvatures of the
interior also are at most K. Finally, an outward section of B on which the

second fundamental form of B is not definite has curvature at most K by the

Gauss equation.   D

3.   A^-CONVEXITY AND ALEXANDROV CURVATURE BOUNDS

Proposition 2. M has curvature bounded above by K in the sense of Alexandrov

if and only if normal Jacobi fields are K-convex.

Proof. Assuming A^-convexity, we shall obtain the upper curvature bound from

a "development" argument of the kind introduced by Alexandrov [Av2], to-

gether with this lemma: Every point of M has a neighborhood in which any

geodesic variation whose endpoint curves are Lipschitz is itself Lipschitz. This

Lemma is a consequence of Theorem 4 of [ABB1]. Thus about any given point,
we may choose a neighborhood of bipoint uniqueness in M such that for every

minimizing triangle Apqr with vertices in the neighborhood, the variation map
from [0, l]x[0, 1] into M determined by the minimizers from any vertex to

the points of the opposite side is Lipschitz. We may also assume that each side
lies in an open set on which the distance function from the opposite vertex is

C1 . (See §6 for the first variation formula and the differentiability of distance
in M.)

To verify the angle comparison condition for Apqr, we develop the above
variation onto a map from [0, 1] x [0, 1] into SK that also has the form of
a cone over a curve. That is, to the vertex p associate a point p in Sk ■ To

the minimizing geodesic yu which joins p to a varying point of qr, associate

a geodesic yu from p in Sk of the same length l(u), turning monotonically

in u, in such a way that the two endpoint curves have the same speed for

each value of u. This is easily seen to be possible because l'(u) coincides

with the tangential component of the velocity of both endpoint curves, by the

first variation formula for M. We thus obtain a comparison cone in Sk , two
of whose sides, pq and pf, axe geodesies of the same length as pq and pr

respectively and whose third side, qr, is a curve of the same length as qr.
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Note that the angle 0 at p swept out by the comparison cone is less than n

since the lengths of the sides of the cone satisfy the strict triangle inequality.
We shall use the Lipschitz property to show that the angle 6 at p in Apqr is

no greater than 8. Since a model triangle in Sk for Apqr may be obtained

by replacing the curve qr in the comparison cone with a geodesic of the same

length, thereby increasing the angle at p, it will follow that the curvature of M

is bounded above by K.

In order to prove that 6 is no greater than 6 , consider two points, x and

v, different from p and lying on pq and pr respectively. Choose x and y

sufficiently close to p that the shortest path x joining their images x and y in

Sk remains within the comparison cone. Then x intersects transversely each

of the varying geodesies yu , and satisfies a C1 relation t = t(u). It follows

that the curve x in M given by t = t(u) is Lipschitz in M. Therefore x

is differentiable almost everywhere and its length is obtained by integrating its

speed. Now fix a value of u at which x is differentiable. There is at least one

Jacobi field Ju along yu that arises from varying u in the positive direction,

by the existence theorem for Jacobi fields and the Lipschitz property of the

variation. Moreover, the tangential component Tu of Ju is linear and the

normal component Nu is again a Jacobi field (see §6). Now let Ju be the

Jacobi field in Sk along yu determined by the comparison cone. Then x'(u)

decomposes into a tangential component of the same length as the tangential

component of x'(u), and a normal component that coincides with the normal

component Nu of Ju. Since at t = 1, the lengths \\JU\\ and \\JU\\ coincide

by construction, as do ||FU|| and ||FU||, then so do ||iV„|| and ||iv"„||. Since Nu

is a normal Jacobi field, it is AT-convex by assumption, which means that \\NU\\

is no greater than ||JV„|| for all values of t. Therefore the speed at each point

of differentiability of x is no greater than the corresponding speed of x, so the

length of x is not greater than that of the minimizer x. We conclude that the

distance between x and y is no greater than that between x and y_ for all x

and y sufficiently close to p, and hence that 6 is no greater than 6 .

The converse argument, deriving the AT-convexity of normal Jacobi fields
from the upper curvature bound, is less delicate. Let y be a minimizing geodesic

of length less than n/y/K, parametrized by [0, 1] and lying in a model neigh-
borhood of M, and / be a normal Jacobi field along y, corresponding to

a sequence (y,, u¡). The A'-convexity of J will follow from the first varia-

tion formula for M and the CAT* distance comparison. Specifically, for the

triangles Ay(0)y(l)y,(l) and Ay,( 1 )y,(0)y(0), construct model triangles in Sk
that likewise are attached along and lie on opposite sides of their corresponding

side. Thus we obtain a sequence of geodesic quadrilaterals in Sk , whose sides

corresponding to y and y, will be denoted by y and y,. By the first variation
formula in M and Sk , if i is sufficiently large then the angle at y(l) is arbi-

trarily close to n/2 since the angle at y(l) is; and then so is the angle at y(0).

It follows that, for any e > 0, if i is sufficiently large then the displacement
in Sk from y to y, satisfies the (K + e)-convexity inequality. Now consider

the point at which y(t)y¡(t) intersects the diagonal y(0)y,(l). The CAT* com-

parison applied to both image triangles implies that the distance in M between
y(t) and y¡(t) is no greater than that between their image points in Sk ■ Since

the length of / is the limit of a sequence of these distances with a scale factor,
we see that J is (A" + e)-convex for any positive e , and hence is AT-convex.   D
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4. Corollaries of the characterization theorem

The characterization theoremimmediately implies Corollary 1, the Hadamard-

Cartan-Gromov theorem for manifolds with boundary. We now consider the

characterization theorem's further consequences. Throughout this section, all

geodesies will be parametrized by [0, 1]. We say M has no conjugate points
along a geodesic y from p if the right-hand endpoint map on the space of

geodesies from p , in the uniform metric, acts homeomorphically from a neigh-

borhood of y onto a neighborhood of its right-hand endpoint [ArBp]. Then the

characterization theorem and [ArBp, Theorem 3] imply (setting n/y/K = oo if

A"<0):

Corollary 3. If for a complete Riemannian manifold with boundary, M, the

sectional curvatures of the interior and the outward sectional curvatures of the

boundary are no greater than K, then M has no conjugate points along geodesies

of length less than n/\/K.

In order to prove the isoperimetric inequality of the next section, we need an
infinitesimal version of Corollary 3:

Corollary 4. If for a complete Riemannian manifold with boundary, M, the

sectional curvatures of the interior and the outward sectional curvatures of the

boundary are no greater than K, and if y : [0, 1] —> M is a geodesic from p of

length less than n/s/K, then any tangent vector w at y(l) that does not point

out of M is the right-hand value of a Jacobi field of M along y that vanishes

at p.

Proof. Choose a sequence of points that approaches y(l) tangentially to w
with respect to a parameter sequence «,. Since the endpoint map is a local

homeomorphism, there is a sequence of geodesies y, having these points as

right-hand endpoints and converging to y . By the existence theorem for Jacobi

fields, it suffices to show d(y(t), y¡(t)) < Cu¡ for some constant C.
For this we use a global version of the CAT* comparison, valid in any Alexan-

drov space of curvature no greater than K. Specifically, for any (not necessarily

minimizing) geodesic y from p of length less than n/VK, and any geodesic o

from p sufficiently close to y in the uniform topology, there exists a triangle in

Sk having the same sidelengths as that formed by y, o and the minimizer be-

tween their right-hand endpoints; furthermore, the distance between y(t) and

o(t) is no greater than the distance between the corresponding points in the

comparison triangle. A proof of this fact is given in [ArBp] using Alexandrov's

technique for building global comparisons from local ones [Av2]. Returning

now to M, we can use the characterization theorem and the comparison just

discussed to estimate the distance d(y(t), y¡(t)) in terms of its value at t = 1,

and thus obtain the corollary.   D

Still in the setting'of Corollaries 3 and 4, let N(p, C) denote the points of

M that can be joined to p by a unique minimizing geodesic of length less than

C. For 0 < C < n/y/K, Corollary 3 and the fact that sequences of minimizers

from p in N(p, C) have convergent subsequences imply that N(p, C) is an
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open neighborhood of p in M, in which the minimizing geodesies from p vary

continuously with their right-hand endpoints. In this setting, the Alexandrov
theory [Av2, §3.8] easily yields a global version of the CAT comparison. Namely,

for any minimizing geodesic triangle with vertex p and perimeter less than

2n/\/K in N(p, n/y/K), the distance from p to any point of the opposite

side is at most equal to the distance between the corresponding points in the

model triangle in Sk ■ Therefore the distance function from p is convex on

N(p, n/2\/K) ; this is stated in the introduction as Corollary 2.

We note that a theorem of the Hadamard-Cartan type was also proved by F.-
E. Wolter for a class of simply-connected 2-dimensional manifolds with bound-

ary M [Wr]. His hypothesis is that M can be imbedded as a closed subset, with

locally rectifiable boundary curves, of a complete 2-dimensional Riemannian

manifold having empty boundary and no conjugate points, and his technique

of proof is adapted to that case.

5. The isoperimetric inequality

Now we prove the extension of the Yau linear isoperimetric inequality to

manifolds with boundary, stated in the introduction as Theorem 2.

Proof of Theorem 2. It suffices to prove the inequality for open sets S with

smooth boundary Y and compact closure; here we are using the formulation of

the problem discussed in [BoZr, §§34 and 14]. Set

cn(K,l)= [     sinn""l y/^Ktdt/sinn"-' yf^Kl.
ho,n

This is the ratio of the volume in the standard «-dimensional space of curvature
K of the ball of radius / to the area of its boundary; the ratio increases with /

to its supremum l/(« - l)\/-K.
Let p be any point of M. By Corollary 1, the geodesies of M from p vary

uniquely and continuously with their right-hand endpoints, and the distance
in M between any two of them is convex. Therefore by taking the cone of

geodesies from p to Y we obtain a Lipschitz continuous map O of Y x [0, 1 ]

into M. By Rademacher's theorem [Fr, 3.1.6], O is differentiable almost ev-

erywhere. The absolute value of the Jacobian of O at a point of differentiability

(q, t) may be written l(q)D(q, t), where l(q) is the length of the geodesic yq
from p to q. Here D(q, t) may be obtained by taking an orthonormal frame

Jx,q> ■■■ , Jn-x,q which is tangent to Y at q (and meets yq at nonacute an-

gles); extending this frame to Jacobi fields Jx, ... , Jn-X along yq, each of

which corresponds to a sequence of geodesies in the cone from p to Y; and

taking the (n - 1)-volume spanned by their normal components Nx,... , /V„_i
at yq(t). The Jacobi fields 7, exist by Corollary 4.

Since N¡ is also a Jacobi field (§6), it is ASconvex by Proposition 1, which
means by definition that

11^(011/11^(1)11 < ùnh(J=Kl(q)t)lsinh(sf=Kl(q)).

Now J2,q, ... , Jn-x,q can be taken normal to yq, and JXt9 at angle 6(q) to

yq.  Therefore the total «-volume subtended by Y (counting multiplicities),
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namely [Fr, 3.2.3] the integral of l(q)D(q, t) over Y x [0, 1], is at most

/ /     l(q)sind(q)sinh"-\\f^Kl(q)t)lsinhn~{(yf^Kl(q))dtdv(q)
JrJ[0,x]

< j cn(K,l(q))dv(q) < S(Y)/(n - 1)^K,

where S(Y) is the (« - l)-volume of Y. Every point in S lies on a geodesic

from p with a minimizing extension that either lies infinitely in the interior of
M or else intersects the boundary of M. Since in either case such an extension

intersects Y, the theorem follows.   D

Obviously, if M is compact with diameter 2R, one obtains the stronger

inequality V(S) < cN(K, R)P(S).
We conclude this section by turning to isoperimetric spanning surfaces in

manifolds with boundary. Suppose the interior and outward boundary sectional

curvatures of M axe at most K, and a is a rectifiable closed curve through

p in M. Suppose a has length / < 2n/\/K and lies in N(p, n/\/K) (see

Corollary 2). It follows from the characterization theorem and Alexandrov's
theory of surface area in spaces of curvature bounded above [Av2, §5] that the

cone of minimizing geodesies from p to a has area at most that of a disk in Sk

of circumference I. Here area is defined as a lower limit of areas of abstractly

"inscribed" polyhedra composed of model triangles. (We remark here that the
technique of Alexandrov's proof has been significantly extended by Reshetnyak

[Rk].) Using Jacobi field comparisons as above, one can adapt Alexandrov's

proof so as to derive the same statement for the Riemannian area. In particular,

by Corollary 1, if M is simply connected and K is nonpositive, the above

statement holds for any rectifiable closed curve a in M.

6. Appendix: The first variation formula

Finally we derive the first variation formula for geodesies in a Riemannian
manifold with boundary (Proposition 3); its consequences for distance func-
tions, tangential and normal components of Jacobi fields, and the representa-

tion of angles were used in the preceding sections. Throughout, we assume that

geodesies are parametrized by [0, 1].

Proposition 3. For any geodesic y of M and any parametrized sequence (07, u¡)
of geodesies converging to y tangentially to a Jacobi field J,

limu-x[l(cTi) - l(y)] = l(y)~l((J(l), y'(l)) - (J(0), y'(0))).

Proof. First let y and o be arbitrary minimizers in M. Consider minimizers

joining the respective endpoints of y and a that have lengths s and t, and

form respective angles of 8 and </> with y', and 8 and </> with a' (see Figure
1). We shall show

.,, s cos 8 - t cos <j) + o(max{s, t}) < 1(a) - l(y)
(6)

< -s cos 8 + t cos 4> + o(max{i, t}).

To obtain (6) we approximate a as in the figure by a broken geodesic path

of length

(7) f(s) + liy)-V~s-Vt + git)>l(o),
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Figure 1

where f(s) and g(t) axe the distances shown. Now consider the two end

geodesic triangles, of sides s, s/s, f(s) and t, \/t, g(t) respectively. Using an
isometric imbedding of M in some Euclidean space E, we may also consider

the Euclidean triangles having the same vertices. It is not hard to verify that
the difference between distances measured in M and in E is on the order of

the cube of either one. If these distances actually coincided, then the law of
cosines would give

s cos 8 = (s2 + s - f(s)2)/2y/s = \/s- f{s) + ois),

where the second equality is obtained by factoring s - fis)2 and noting that

|V^ - f(s)\ < s by the triangle inequality and hence that fis) = \/s + oi\/s).
A similar formula would hold for t cos <p. But the approximation implies that

for the first triangle, each sidelength in M differs from its Euclidean sidelength
by o{s) and for the second, by o(i). Since the Euclidean angles approach the

Riemannian ones, it follows from (7) that lia) - /(y) is at most -s cos 8 +

icos <f> + o(max{s, t}). Reversing the roles of y and a gives the remaining

inequality in (6).
Now consider a parametrized sequence (er,, «,-) of geodesies converging to

y tangentially to J, and suppose first that the a¡ and y jire minimizers. Set

er, = a above. Then for i sufficiently large, 8, 8 and <j>, <f> axe approximately

supplementary pairs by the convergence theorem for geodesies, that is, cos 8 +

cos 8 and cos (¡>+cos <j> approach 0. The desired formula follows immediately.

Since every point has a neighborhood in which all geodesies are minimizers, and

the formula is additive, the formula also holds for nonminimizing geodesies.   D

The formula (6) has the following immediate corollary, by holding left-hand
endpoints fixed, so that 5 = 0.

Corollary 5. The distance function dp from p is differentiable except at those

points q that can be joined to p by two minimizers that have different tangent

directions at q; and dp is Cx on the complement of the closure of the set of

those points q.

F.-E. Wolter earlier proved the second statement by a different method [Wr,

Theorem 3.2], in the course of his study of various definitions of cut locus in

manifolds with boundary, and their relationships with each other and with the

regularity properties of the distance function. The first statement is also useful
in investigating the cut locus [ABB 2].

The following fact was used implicitly in §3, since the angle comparisons

proved there were for Riemannian angles.
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Corollary 6. Riemannian angles in M coincide with angles in Alexandrov's

sense.

Proof. The Alexandrov angle at p between two minimizers yx and y2 is de-

fined to be the lim sup of all comparison angles in the Euclidean plane So

obtained by approaching p along yi and y2. That is, if points are chosen on
yx and y2 at distances a and b from p, respectively, and if c is the distance

between these points, then the cosine of the Alexandrov angle is

(8) liminfia2 + b2-c2)/2ab.
a,b—>0

We claim that in a manifold with boundary, this lim inf is a limit, and equals

cos 8 where 8 is the Riemannian angle between yx and y2. To see this, it

suffices to let a and b approach 0 along sequences for which the expression

in (8) converges , a < b, and a/b2 converges in [0, oo]. If a/b2 does not

approach 0, then the limit in (8) does not change if one substitutes distances

measured through E for a, b and c, and so the claim is clear. If a = oib2),

then we may carry out the construction illustrated in Figure 1 with s = a, t = 0,

and y and a having sidelengths b and c respectively, to obtain

a cos 8 + oia) < c - b < -a cos 8 + o(a)

where 8 is fixed as above. Using the fact that 8 approaches n-8 , one shows

that the expression in (8) approaches cosö, as claimed.   D

Finally we note that using the first variation formula it is not hard to prove
the following:

Corollary 7. The tangential component of a Jacobi field J is linear. Its normal

component is again a Jacobi field iexcept possibly if the base geodesic y meets
J in an acute angle at a boundary endpoint of y ).

References

[Avl] A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications,

Trudy Mat. Inst. Steklov. 38 ( 1951 ), 5-23. (Russian) (Much of [Av 1 ] is translated in [Av2].)

[Av2]    _, Über eine Verallgemeinerung der Riemannschen Geometrie, Sehr. Forschungsinst.

Math. 1 (1957), 33-84.

[ABN] A. D. Alexandrov, V. N. Berestovskii, and I. G. Nikolaev, Generalized Riemannian spaces,

Russian Math. Surveys 41 (1986), 1-54.

[ABB1] S. B. Alexander, I. D. Berg, and R. L. Bishop, The Riemannian obstacle problem, Illinois
J. Math. 31 (1987), 167-184.

[ABB2] _, Cut loci, minimizers and wave fronts in Riemannian manifolds with boundary, Michi-

gan Math. J. 40 (1993) (to appear).

[ArBp] S. B. Alexander and R. L. Bishop, The Hadamard-Cartan theorem in locally convex spaces,

Enseign. Math. 36 (1990), 309-320.

[Bn]      W. Ballmann, Singular spaces of non-positive curvature. (E. Ghys and P. de la Harpe, eds.),

Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhäuser, Boston, Basel, and

Stuttgart, 1990.

[BpCn] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, New York and

London, 1964.

[BoZr]  Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Springer-Verlag, Berlin, Heidel-

berg, and New York, 1988.

[C-V]    S. Cohn-Vossen, Existenz Kurzester Wege, Doklady SSSR 8 (1935), 339-342.



716 S. B. ALEXANDER, I. D. BERG, AND R. L. BISHOP

[Fr]      H. Federer, Geometrie measure theory, Springer-Verlag, Berlin, Heidelberg, and New York,

1969.

[GIMr] D. Gromoll and W. T. Meyer, Examples of complete manifolds with positive Ricci curvature,

J. Differential Geom. 21 (1985), 195-211.

[Gvl]    M. Gromov, Hyperbolic manifolds, groups and actions. (I. Kra and B. Maskit, eds.), Rie-

mann Surfaces and Related Topics (Proa, Stony Brook, 1978), Ann. of Math. Studies, no.

97, Princeton Univ. Press, 1981, pp. 183-213.

[Gv2]   _, Hyperbolic groups. (S. M. Gersten, ed.), Essays in Group Theory, Math. Sei. Res.

Inst. Publ., no. 8, Springer-Verlag, New York, Berlin, Heidelberg, 1987, pp. 75-264.

[Rk]     Yu. G. Reshetnyak, Nonexpanding mappings in a space of curvature no greater than K ,

Sibirsk. Mat. Z. 9 (1968), 918-927; English transi, in Siberian Math. J. 9 (1968), 683-689.

[Si]       D. Scollozi, Un risultato di locale unicita per le geodetiche su varieta con bordo, Boll. Un.

Mat. Ital. B(6) 5 (1986), 309-327.

[Tv]      M. Troyanov, Espaces a courbure negative et groupes hyperboliques. (E. Ghys and P. de la

Harpe, eds.), Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhäuser, Boston,

Basel, and Stuttgart, 1990.

[Wr]      F.-E. Wolter, Cut loci in bordered and unbordered Riemannian manifolds, Technische Uni-

versität Berlin, FB Mathematik, Dissertation 249S, 1985.

[Yu]     S.-T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian mani-

fold, Ann. Sei. École. Norm. Sup. 8 (1975), 487-507.

Department of Mathematics, University of Illinois at Urbana Champaign,  273
Altgeld Hall, MC-382, 1409 West Green Street, Urbana, Illinois 61801

E-mail address: sba@symcom.math.uiuc.edu

E-mail address: berg@symcom.math.uiuc.edu

E-mail address: bishop@symcom.math.uiuc.edu


