On the Toda and Kac-van Moerbeke systems
HTML articles powered by AMS MathViewer
- by F. Gesztesy, H. Holden, B. Simon and Z. Zhao PDF
- Trans. Amer. Math. Soc. 339 (1993), 849-868 Request permission
Abstract:
Given a solution of the Toda lattice we explicitly construct a solution of the Kac-van Moerbeke system related to each other by a Miura-type transformation. As an illustration of our method we derive the $N$-soliton solutions of the Kac-van Moerbeke lattice.References
- Mark Adler, On the Bäcklund transformation for the Gel′fand-Dickey [Dikiĭ] equations, Comm. Math. Phys. 80 (1981), no. 4, 517–527. MR 628508
- F. V. Atkinson, Discrete and continuous boundary problems, Mathematics in Science and Engineering, Vol. 8, Academic Press, New York-London, 1964. MR 0176141
- Ju. M. Berezans′kiĭ, Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. MR 0222718
- P. A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), no. 2, 267–310. MR 495676
- P. Deift, L. C. Li, and C. Tomei, Toda flows with infinitely many variables, J. Funct. Anal. 64 (1985), no. 3, 358–402. MR 813206, DOI 10.1016/0022-1236(85)90065-5
- P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), no. 2, 121–251. MR 512420, DOI 10.1002/cpa.3160320202
- H. Flaschka, On the Toda lattice. II. Inverse-scattering solution, Progr. Theoret. Phys. 51 (1974), 703–716. MR 408648, DOI 10.1143/PTP.51.703
- N. C. Freeman and J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and the Kadomtsev-Petviashvili equations: the Wronskian technique, Proc. Roy. Soc. London Ser. A 389 (1983), no. 1797, 319–329. MR 726202
- F. Gesztesy, H. Holden, E. Saab, and B. Simon, Explicit construction of solutions of the modified Kadomtsev-Petviashvili equation, J. Funct. Anal. 98 (1991), no. 1, 211–228. MR 1111199, DOI 10.1016/0022-1236(91)90096-N
- F. Gesztesy and W. Schweiger, Rational KP and mKP-solutions in Wronskian form, Rep. Math. Phys. 30 (1991), no. 2, 205–222 (1992). MR 1188396, DOI 10.1016/0034-4877(91)90025-I
- F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV-equation, Trans. Amer. Math. Soc. 324 (1991), no. 2, 465–525. MR 1029000, DOI 10.1090/S0002-9947-1991-1029000-7
- F. Gesztesy and B. Simon, Constructing solutions of the mKdV-equation, J. Funct. Anal. 89 (1990), no. 1, 53–60. MR 1040955, DOI 10.1016/0022-1236(90)90003-4
- F. Gesztesy and Z. Zhao, On critical and subcritical Sturm-Liouville operators, J. Funct. Anal. 98 (1991), no. 2, 311–345. MR 1111572, DOI 10.1016/0022-1236(91)90081-F —, On critical and subcritical Jacobi operators, J. Differential Equations (to appear).
- I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Jerusalem, 1965; Daniel Davey & Co., Inc., New York, 1966. Translated from the Russian by the IPST staff. MR 0190800
- Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
- Don B. Hinton and Roger T. Lewis, Spectral analysis of second order difference equations, J. Math. Anal. Appl. 63 (1978), no. 2, 421–438. MR 611455, DOI 10.1016/0022-247X(78)90088-4 R. Hirota, Exact $N$-soliton solution of a nonlinear lumped network equation, J. Phys. Soc. Japan 35 (1973), 286-288.
- M. Kac and Pierre van Moerbeke, On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices, Advances in Math. 16 (1975), 160–169. MR 369953, DOI 10.1016/0001-8708(75)90148-6
- M. Kac and Pierre van Moerbeke, On some periodic Toda lattices, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 1627–1629. MR 367360, DOI 10.1073/pnas.72.4.1627
- S. V. Manakov, Complete integrability and stochastization of discrete dynamical systems, Ž. Èksper. Teoret. Fiz. 67 (1974), no. 2, 543–555 (Russian, with English summary); English transl., Soviet Physics JETP 40 (1974), no. 2, 269–274 (1975). MR 0389107
- Vladimir A. Marchenko, Nonlinear equations and operator algebras, Mathematics and its Applications (Soviet Series), vol. 17, D. Reidel Publishing Co., Dordrecht, 1988. Translated from the Russian by V. I. Rublinetskiĭ. MR 941373, DOI 10.1007/978-94-009-2887-9
- Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202–1204. MR 252825, DOI 10.1063/1.1664700
- J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Advances in Math. 16 (1975), 197–220. MR 375869, DOI 10.1016/0001-8708(75)90151-6
- Minoru Murata, Structure of positive solutions to $(-\Delta +V)u=0$ in $\textbf {R}^n$, Duke Math. J. 53 (1986), no. 4, 869–943. MR 874676, DOI 10.1215/S0012-7094-86-05347-0
- S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
- William T. Patula, Growth and oscillation properties of second order linear difference equations, SIAM J. Math. Anal. 10 (1979), no. 1, 55–61. MR 516749, DOI 10.1137/0510006
- Barry Simon, Large time behavior of the $L^{p}$ norm of Schrödinger semigroups, J. Functional Analysis 40 (1981), no. 1, 66–83. MR 607592, DOI 10.1016/0022-1236(81)90073-2
- Morikazu Toda, Theory of nonlinear lattices, 2nd ed., Springer Series in Solid-State Sciences, vol. 20, Springer-Verlag, Berlin, 1989. MR 971987, DOI 10.1007/978-3-642-83219-2
- Stephanos Venakides, Percy Deift, and Roger Oba, The Toda shock problem, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 1171–1242. MR 1127056, DOI 10.1002/cpa.3160440823
- Susumu Yamazaki, On the system of nonlinear differential equations $\dot y_k=y_k(y_{k+1}-y_{k-1})$, J. Phys. A 20 (1987), no. 18, 6237–6241. MR 926381 V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, Nonlinear state of parametric wave excitation in a plasma, JETP Lett. 19 (1974), 151-152.
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 849-868
- MSC: Primary 58F07; Secondary 35Q58
- DOI: https://doi.org/10.1090/S0002-9947-1993-1153014-1
- MathSciNet review: 1153014