GAUSS MAP OF MINIMAL SURFACES WITH RAMIFICATION

MIN RU

Abstract. We prove that for any complete minimal surface M immersed in \mathbb{R}^n, if in \mathbb{CP}^{n-1} there are $q > n(n+1)/2$ hyperplanes H_j in general position such that the Gauss map of M is ramified over H_j with multiplicity at least e_j for each j and

$$\sum_{j=1}^{q} \left(1 - \frac{n-1}{e_j}\right) > n(n+1)/2,$$

then M must be flat.

1. Introduction

Let $x: M \to \mathbb{R}^n$ be a (smooth, oriented) minimal surface immersed in \mathbb{R}^n. Make M into a Riemann surface by decreeing that the 1-form $d\xi_1 + id\xi_2$ is of type $(1,0)$, where (ξ_1, ξ_2) are any local isothermal coordinates of M. The Gauss map of x is defined to be

$$G: M \to Q_{n-2}(C) \subset \mathbb{CP}^{n-1}, \quad G(z) = [(\partial x/\partial z)]$$

where $[(\cdot)]$ denotes the complex line in \mathbb{C}^n through the origin and (\cdot), $z = \xi_1 + i\xi_2$ is the holomorphic coordinate of M, and

$$Q_{n-2}(C) = \{(w_0 : \cdots : w_{n-1}: w_0^2 + \cdots + w_{n-1}^2 = 0) \subset \mathbb{CP}^{n-1}.$$

By the assumption of minimality of M, G is a holomorphic map of M into \mathbb{CP}^{n-1}. It is a natural question to study the “value distribution” properties of the Gauss map G. Fujimoto (see [8]) has shown that the Gauss map of a nonflat minimal surfaces can omit at most $n(n+1)/2$ hyperplanes in general position in \mathbb{CP}^{n-1} under the assumption that G is nondegenerate. The “nondegenerate” assumption was removed by the author (see [13]). The purpose of this paper is to study more general “value distribution” properties of the Gauss map. In particular, we study the Gauss map with ramification.

One says that G is ramified over a hyperplane $H = \{[w] \in \mathbb{CP}^{n-1} : a_0w_0 + \cdots + a_{n-1}w_{n-1} = 0\}$ with multiplicity at least e if all the zeros of the function $g_H = (G, A)$ have orders at least e, where $A = (a_0, \ldots, a_{n-1})$. If the image of G omits H, we shall say that G is ramified over H with multiplicity ∞.

Our main result is the following:

Received by the editors July 10, 1991.

1991 Mathematics Subject Classification. Primary 53A10, 32H30.
Theorem 1. Let \(M \) be a complete minimal surface immersed in \(\mathbb{R}^n \) and assume that the Gauss map \(G \) of \(M \) is \(k \)-nondegenerate (that is \(G(M) \) is contained in a \(k \)-dimensional linear subspace of \(\mathbb{C}P^{n-1} \), but none of lower dimension), \(1 \leq k \leq n - 1 \). Let \(H_i \subset \mathbb{C}P^{n-1} \) be \(q \) hyperplanes in general position. If \(G \) is ramified over \(H_i \) with multiplicity at least \(e_i \) for each \(i \). Then

\[
\sum_{j=1}^{q} \left(1 - \frac{k}{e_j} \right) \leq (k + 1) \left(n - \frac{k}{2} - 1 \right) + n.
\]

In particular, for any complete minimal surface \(M \) immersed in \(\mathbb{R}^n \), if in \(\mathbb{C}P^{n-1} \) there are \(q > n(n + 1)/2 \) hyperplanes in general position such that its Gauss map \(G \) is ramified over \(H_j \) with multiplicity at least \(e_j \) for each \(j \) and

\[
\sum_{j=1}^{q} \left(1 - \frac{(n-1)}{e_j} \right) > n(n + 1)/2,
\]

then \(M \) must be flat.

In the case \(m = 3 \), \(Q_1(C) \) can be identified with \(\mathbb{C}P^1 \). We have a better result.

Theorem 2. Let \(M \) be a complete minimal surface \((\subset \mathbb{R}^3)\). If there are \(q(q > 4) \) distinct points \(a_1, \ldots, a_q \in \mathbb{C}P^1 \) such that the Gauss map of \(M \) is ramified over \(a_j \) with multiplicity at least \(e_j \) for each \(j \) and \(\sum_{j=1}^{q}(1 - 1/e_j) > 4 \), then \(M \) must be flat.

In particular, if the Gauss map omits five distinct points, then \(M \) must be flat.

2. FACTS ON HOLONOMIC CURVES INTO PROJECTIVE SPACES

We shall recall some known results in the theory of holomorphic curves.

(A) Associated curve. Let \(f \) be a nondegenerated holomorphic map of \(\Delta_R: \{z: |z| < R\} \) into \(\mathbb{C}P^k \), where \(0 < R < \infty \). Take a reduced representation

\[
f = [Z_0: \cdots: Z_k], \text{ where } Z = (Z_0, \ldots, Z_k): \Delta_R \to \mathbb{C}^k+1 - \{0\}.
\]

Denote by \(Z^{(j)} \) the \(j \)th derivative of \(Z \) and define

\[
\Lambda_j = Z^{(0)} \wedge \cdots \wedge Z^{(j)}: \Delta_R \to \wedge^{j+1} \mathbb{C}^{k+1}
\]

for \(0 \leq j \leq k \). Evidently \(\Lambda_{k+1} \equiv 0 \).

Let \(P: \wedge^{j+1} \mathbb{C}^{k+1} - \{0\} \to \mathbb{C}P^N_j \) denote the canonical projection, where \(N_j = \binom{k+1}{j+1} - 1 \). The \(j \)th associated curve of \(f \) is the map \(f_j = P(\Lambda_j) \).

It is well known [4] (also see [16]) that the pull-back \(\Omega_j \) of the Fubini-study metric on \(\mathbb{C}P^N_j \) by \(f_j \) is given by

\[
\Omega_j = dd^c \log |\Lambda_j|^2 = \frac{i}{2\pi} \frac{|\Lambda_{j-1}|^2 |\Lambda_{j+1}|^2}{|\Lambda_j|^4} dz \wedge d\bar{z},
\]

for \(0 \leq j \leq k \) and by convention \(\Lambda_{-1} \equiv 1 \). Note that \(\Omega_k \equiv 0 \). It follows that

\[
\text{Ric } \Omega_j = \Omega_{j-1} + \Omega_{j+1} - 2\Omega_j.
\]
Take a hyperplane $H: (W, A) = 0$, where $A = (a_0, \ldots, a_k)$ is a unit vector. Define

$$\varphi_j(H) = \frac{|A_j \lor A|^2}{|A_j|^2 |A|^2}.$$

Note that $0 \leq \varphi_j(H) \leq \varphi_{j+1}(H) \leq 1$ for $0 \leq j \leq k$ and $\varphi_k(H) = 1$.

We need the following well-known lemma (see [4, 16 and 17]).

Lemma 2.1. Let H be a hyperplane in CP^k, then for any constant $N > 1$, for $0 < p < k - 1$,

$$(2.3) \quad \frac{1}{N - \log \varphi_p(H)} \geq \frac{\varphi_{p+1}(H)}{\varphi_p(H)(N - \log \varphi_p(H))} \left(\frac{1}{N} \right) \Omega_p,$$

on $\Delta_R - \{ 0 \} = \{ \varphi_p = 0 \}$.

(B) **Nochka weights and product to sum estimate.** We consider q hyperplanes H_j $(1 \leq j \leq q)$ in CP^k which are given by $H_j: (W, A_j) = 0$. According to Chen [2], we give the following definition.

Definition 2.2. We say that hyperplanes H_1, \ldots, H_q are in n-subgeneral position if, for every $1 \leq j_0 < \cdots < j_n \leq q$, $A_{j_0}, A_{j_1}, \ldots, A_{j_n}$ generate C^{k+1}.

In [11] (see also [2]), Nochka has given the following lemma to prove the Cartan conjecture.

Lemma 2.3. Let H_1, \ldots, H_q be hyperplanes in CP^k located in the n-subgeneral position, where $q > 2n - k + 1$. Then there are some constants $(\omega(1), \ldots, \omega(q)$ and θ satisfying the following condition:

(i) $0 < \omega(j) \theta \leq 1$ $(1 \leq j \leq q)$,

(ii) $\theta (\sum_{j=1}^{q} \omega(j) - k - 1) = q - 2n + k - 1$,

(iii) $1 \leq (n + 1)/(k + 1) \leq \theta \leq (2n - k + 1)/(k + 1)$,

(iv) if $R \subset Q$ and $0 < \# R \leq n + 1$, then $\sum_{j \in R} \omega(j) \leq d(R)$.

For the proof, see [2] or [11].

Definition 2.4. We call constants $\omega(j)$ $(1 \leq j \leq q)$ and θ above Nochka weights and a Nochka constant for H_1, \ldots, H_q respectively.

Nochka weights are useful because of the following lemma.

Lemma 2.5. Under the above assumptions. Let E_1, \ldots, E_q be a sequence of real numbers with $E_j \geq 1$ for all j. Then for any subset B of the set $\{ 1, 2, \ldots, q \}$ with $0 < \# B \leq n + 1$, there exists a subset C of B such that $\{ A_j | j \in C \}$ is a base of the linear space spanned by $\{ A_j | j \in B \}$ and

$$\prod_{j \in B} E_j^{\omega(j)} \leq \prod_{j \in C} E_j,$$

where $\omega(j)$ are the Nochka weights associated to hyperplanes $H_j: (A_j, W) = 0$, $j = 1, 2, \ldots, q$.

For the proof, see [2] or [11].

We also have the following product to sum estimate.
Lemma 2.6 (see Chen [2]). Under the above assumptions. For \(0 < p \leq k - 1\), any constant \(N > 1\), \(1/q \leq \lambda_p \leq 1/(k - p)\), there exists a positive constant \(c_p > 0\) only depends on \(p\) and the given hyperplanes such that

\[
c_p \prod_{j=1}^{q} \left(\frac{\varphi_{p+1}(H_j)\omega(j)}{\varphi_p(H_j)} \frac{1}{(N - \log \varphi_p(H_j))^2} \right)^{\lambda_p} \leq \sum_{j=1}^{q} \frac{\varphi_{p+1}(H_j)}{\varphi_p(H_j)(N - \log \varphi_p(H_j))^2},
\]

on \(\Delta_R - \{\varphi_p = 0\}\).

3. Metrics with negative curvature

We retain the notation of the last section. Let \(f: \Delta_R \to \mathbb{C}P^k\) be a nondegenerate holomorphic map. Take a reduced representation \(f = [Z_0 : \cdots : Z_k]\) where \(Z = (Z_0, \ldots, Z_k): \Delta_R \to \mathbb{C}^{k+1} - \{0\}\) is a holomorphic map. Let \(H_1, \ldots, H_q\) be hyperplanes in \(\mathbb{C}P^k\) located in \(n\)-subgeneral position. Let \(\omega(j)\) be their Nochka weights.

Let \(f\) be ramified over \(H_j\) with multiplicity at least \(e_j\) for each \(j\). Assume that

\[
\sum_{j=1}^{q} \left(1 - \frac{k}{e_j}\right) > 2n - k + 1,
\]

we shall construct a continuous pseudo-metric on \(\Delta_R\) such that its Gauss curvature is less than or equal to \(-1\). So that we can use Schwarz lemma to obtain our main inequality.

Let \(\Omega_p = \frac{i}{2\pi} h_p(z) dz \wedge d\bar{z}\). Let

\[
\sigma_p = c_p \prod_{j=1}^{q} \left(\frac{\varphi_{p+1}(H_j)}{\varphi_p(H_j)} \right)^{\omega(j)(1-1/e_j)} \frac{1}{(N - \log \varphi_p(H_j))^2} h_p.
\]

Where \(c_p\) is the constant in the product to sum estimate,

\[
\lambda_p = 1/ \left((k - p) + (k - p)^2 \frac{2q}{N} \right),
\]

and \(N > 1\).

We take the geometric mean of the \(\sigma_p\) and define

\[
\Gamma = i \frac{1}{2\pi} c \prod_{p=0}^{k-1} \sigma_p^{\beta_p/\lambda_p} dz \wedge d\bar{z}.
\]

where \(\beta_k = 1/(\sum_{p=0}^{k-1} \lambda_p^{-1})\), and \(c = 2(\prod_{p=0}^{k-1} \lambda_p^{\beta_p})\).

Let

\[
\Gamma = i \frac{1}{2\pi} h(z) dz \wedge d\bar{z}.
\]

We now compute \(h(z)\). By (3.1) and (3.2), we have

\[
h(z) = c \prod_{j=1}^{q} \frac{\varphi_0(H_j)^{\omega(j)(1-1/e_j)} \beta_k}{\varphi_0(H_j)} \prod_{p=0}^{k-1} \frac{h_p^{\beta_p/\lambda_p}}{(N - \log \varphi_p(H_j))}.\]
By (2.1),
\[h_p^{1/\beta_p} = \left(\frac{|A_{p-1}|^2 |A_{p+1}|^2}{|A_p|^4} \right)^{(k-p)+(k-p)^2q/N}, \]
so
\[\prod_{p=0}^{k-1} h_p^{1/\beta_p} = |A_0|^{-2(k+1)-(k^2+2k-1)4q/N} |A_1|^{8q/N} \cdots |A_{k-1}|^{8q/N} |A_k|^{2+4q/N}. \]

Notice that \(|A_0| = |Z| \), and \(\varphi_0(H_j) = |(Z, A_j)|^2/|Z|^2 \), therefore
\[(3.5) \quad h(z) = c \left[\frac{|Z|^{\sum_j \omega(j)(1-k/e_j)-(k+1)-(k^2+2k-1)q/N} |(Z, A_1)\cdots (Z, A_{k-1})|^{4q/N} |A_k|^{1+2q/N}}{\prod_{j=1}^q |(Z, A_j)|^{\omega(j)(1-k/e_j)} \prod_{p=0}^{k-1} (N - \log \varphi_p(H_j))} \right]^{2\beta_k}. \]

Lemma 3.1. The function
\[\frac{|A_k|}{\prod_{j=1}^q |(Z, A_j)|^{\omega(j)(1-k/e_j)}} \]

is continuous on \(\Delta_R \).

Proof. We shall prove that the function
\[P = \left[\frac{|A_k|^2}{\prod_{j=1}^q \varphi_0(H_j)^{\omega(j)(1-k/e_j)}} \right]^e \]
is continuous where \(e = e_1 \cdots e_q \). Lemma 3.1 follows from this. According to the expression of \(P(z) \), we only need to consider the points at which \((Z, A_j)\) vanishes. For zero point \(z_0 \) of \((Z, A_j)\), since \(f \) is ramified over \(H_j \) with multiplicity at least \(e_j \) for each \(j \), we have
\[(Z, A_j) = (z-z_0)^{\nu_j} Q_j(z) \]
where \(Q_j(z_0) \neq 0 \), and \(\nu_j \geq e_j \) or \(\nu_j = 0 \). The \(n \)-subgeneral position implies that, at each point \(z \), there are at most \(n \) of hyperplanes \(H_j \), such that \((Z(z), A_j) = 0 \). Thus there exists a constant \(c_0 \) (depending only on the given hyperplanes) such that
\[\#B = \# \{ j \mid |(Z(z), A_j)|/|A_j||Z(z)| \leq c_0 \} \leq n. \]

Let \(E_j = 1/\varphi_0(H_j)^{\omega(j)(1-k/e_j)} \), then \(E_j \leq 1 \). If \(j \notin B \), then \(\varphi_0(H_j) > c_0 \), so \(E_j \leq c_1 \) (depending only on the given hyperplanes).

Applying Lemma 2.5 with \(E_j \) above, we obtain
\[\frac{|A_k|^2}{\prod_{j=1}^q \varphi_0(H_j)^{\omega(j)(1-k/e_j)}} \leq c_2 \frac{|A_k|^2}{\prod_{j \in B} \varphi_0(H_j)^{\omega(j)(1-k/e_j)}} \leq c_2 \frac{|A_k|^2}{\prod_{j \in C} \varphi_0(H_j)^{(1-k/e_j)}}. \]

We may assume the index set \(C = \{ 1, 2, \ldots, l \} \) and \(l \leq k + 1 \), therefore
\[\left[\prod_{j \in C} (Z(z), A_j)^{(1-k/e_j)} \right]^e = (z-z_0)^b R(z) \]
where \(b = \sum_{j=1}^{l} e v_j (1 - k/e_j) \) and \(R \) is a holomorphic function such that \(R(z_0) \neq 0 \). Since

\[
|\Lambda_k| = \det \begin{vmatrix}
Z_0 & Z_1 & Z_2 & \cdots & Z_k \\
Z'_0 & Z'_1 & Z'_2 & \cdots & Z'_k \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Z^{(k)}_0 & Z^{(k)}_1 & Z^{(k)}_2 & \cdots & Z^{(k)}_k \\
(Z, A_1) & (Z, A_2) & (Z, A_3) & \cdots & \\
(Z, A_1)' & (Z, A_2)' & (Z, A_3)' & \cdots & \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(Z, A_1)^{(k)} & (Z, A_2)^{(k)} & (Z, A_3)^{(k)} & \cdots & \\
\end{vmatrix},
\]

we have \(\Lambda_k = (z - z_0)^{\nu} S(z) \), where \(\nu = \nu_1 + \nu_2 - 1 + \cdots + \nu_l - k \) and \(S \) is a holomorphic function. Hence we obtain

\[
P(z) \leq |(z - z_0)^{2p} T(z)|,
\]

where

\[
p = \frac{e_k}{e_1} + \frac{e}{e_2} (k \nu_2 - e_2) + \frac{e}{e_3} (k \nu_3 - 2e_3) + \cdots + \frac{e}{e_l} (k \nu_l - (l - 1)e_l) \geq 0,
\]

and \(T(z) \) is continuous at \(z_0 \). Therefore \(P(z) \) is bounded around \(z_0 \). Therefore \(P(z) \) is continuous. Q.E.D.

Lemma 3.2. If \(\sum_{j=1}^{q} (1 - k/e_j) \geq 2n - k + 2 \), and

\[
2q/N < \left(\sum_{j=1}^{q} \omega(j)(1 - k/e_j) - (k + 1) \right)/(k^2 + 2k),
\]

we have

(i) Ric \(\Gamma \geq \Gamma \) on \(\Delta_R - \bigcup \{ \varphi_0(H_j) = 0 \} \).

(ii) \(\Gamma \) is a continuous pseudo-metric on \(\Delta_R \).

Proof. From (3.3) and (3.4) it follows that

\[
\text{Ric } \Gamma = - \beta_k \sum_{j=1}^{k} \omega(j) \left(1 - \frac{k}{e_j} \right) d^c \log \varphi_0(H_j)
+ \beta_k \sum_{j=1}^{k} \sum_{p=0}^{k-1} d^c \log(1/(N - \log \varphi_p(H_j))^2)
+ \beta_k \sum_{p=0}^{k-1} (1/\lambda_p) \text{Ric } \Omega_p .
\]

By Lemma 2.1, (2.2), and that \(d^c \log \varphi_0(H_j) = -\Omega_0 \), we have

\[
\text{Ric } \Gamma \geq \beta_k \left(\sum_{j=1}^{q} \omega(j) \left(1 - \frac{k}{e_j} \right) \right) \Omega_0 + 2 \sum_{j=1}^{q} \sum_{p=0}^{k-1} \frac{\varphi_{p+1}(H_j)}{\varphi_p(H_j)(N - \log \varphi_p(H_j))^2} \Omega_p
- \frac{2q}{N} \sum_{p=0}^{k-1} \Omega_p + \sum_{p=0}^{k-1} \left[(k - p) + (k - p) \right] \frac{2q}{N} \left\{ \Omega_{p+1} - 2\Omega_p + \Omega_{p-1} \right\} .
\]
Using Lemma 2.6, we obtain
\[
\sum_{j=1}^{q} \frac{\varphi_{p+1}(H_j)}{\varphi_p(H_j)(N - \log \varphi_p(H_j))^2} \Omega_p
\leq c_p \left[\prod_{j=1}^{q} \left(\frac{\varphi_{p+1}(H_j)}{\varphi_p(H_j)} \right)^{\omega(j)} \frac{1}{(N - \log \varphi_p(H_j))^2} \right]^{\lambda_p} \Omega_p
\geq \frac{i}{2\pi} \sigma_p dz \wedge d\bar{z}.
\]

We also notice that \(\Omega_k = 0 \) so that
\[
\sum_{p=0}^{k-1} (k-p)(\Omega_{p+1} - 2\Omega_p + \Omega_{p-1}) = -(k+1)\Omega_0
\]
and therefore
\[
\text{Ric} \Gamma \geq \beta_k \left(\sum_{j=1}^{q} \omega(j) \left(1 - \frac{k}{e_j} \right) \Omega_0 + \frac{2i}{2\pi} \sum_{p=0}^{k-1} \sigma_p dz \wedge d\bar{z} - (k+1)\Omega_0 - (k^2 + 2k) \frac{2q}{N} \Omega_0 \right.
\]
\[
+ \sum_{p=1}^{k-2} \left((k-p+1)^2 - 2(k-p)^2 + (k-p-1)^2 - 1 \right) \frac{2q}{N} \Omega_p + \frac{2q}{N} \Omega_{k-1} \bigg). \]

The following is an elementary inequality:
For all the positive numbers \(x_1, \ldots, x_n \) and \(a_1, \ldots, a_n \),
\[
(3.6) \quad a_1x_1 + \cdots + a_nx_n \geq (a_1 + \cdots + a_n)(x_1^{a_1} \cdots x_n^{a_n})^{1/(a_1 + \cdots + a_n)}.
\]

Letting \(a_p = \lambda_p^{-1} \) in (3.6), we have
\[
\sum_{p=0}^{k-1} \sigma_p \geq \frac{c}{2\beta_k} \sum_{p=0}^{k-1} \sigma_p^{\beta_p/\lambda_p}
\]
and therefore
\[
\text{Ric} \Gamma \geq \beta_k \left(\left(\sum_{j=1}^{q} \omega(j) \left(1 - \frac{k}{e_j} \right) - (k+1) - (k^2 + 2k) \frac{2q}{N} \right) \right. \Omega_0
\]
\[
+ \sum_{p=0}^{k-2} \frac{2q}{N} \Omega_p + \frac{2q}{N} \Omega_{k-1} \bigg) + \Gamma.
\]

By Lemma 2.2, we find
\[
\theta \left(\sum_{j=1}^{q} \omega(j) \left(1 - \frac{k}{e_j} \right) - k - 1 \right) = \theta \left(\sum_{j=1}^{q} \omega(j) - k - 1 \right) - \frac{\sum_{j=1}^{q} \omega(j) \theta k}{e_j}
\]
\[
= q - 2n + k - 1 - \frac{\sum_{j=1}^{q} \omega(j) \theta k}{e_j} \geq q - 2n + k - 1 - \frac{k}{e_j}
\]
\[
= \sum_{j=1}^{q} \left(1 - \frac{k}{e_j} \right) - 2n + k - 1 > 0
\]
and $\theta > 0$, so
\[\sum_{j=1}^{q} \omega(j) \left(1 - \frac{k}{e_j} \right) - (k + 1) > 0. \]

This implies $\text{Ric} \Gamma \geq \Gamma$. Thus (i) is satisfied.

(ii) follows from Lemma 3.1, (3.3) and (3.5). Q.E.D.

We recall the following generalization of the Schwarz lemma.

Lemma 3.3. Let $\Gamma = \frac{1}{2\pi} \int h(z) \, dz \wedge dz$ be a continuous pseudo-metric on Δ_R whose curvature is bounded above by a negative constant. Then, for some positive c_0, $h(z) \leq c_0 \left(\frac{2R}{(R^2 - |z|^2)} \right)^2$. For the proof, see [1, pp. 12–14].

The purpose of this section is to obtain the following lemma.

Main Lemma. Let $f = [Z_0 : \cdots : Z_k] : \Delta_R \to \mathbb{C} P^k$ be a nondegenerate holomorphic map, H_1, \ldots, H_q be hyperplanes in $\mathbb{C} P^k$ in n-subgeneral position, $\omega(j)$ be their Nochka weights. Let $H_j : (W, A_j) = 0$ and $Z = (Z_0, \ldots, Z_k)$. If f is ramified over H_j with multiplicity at least e_j for each j, $\sum_{j=1}^{q} (1 - k/e_j) > 2n - k + 1$ and $N > 2q(k^2 + 2k)/\left(\sum_{j=1}^{q} \omega(j)(1 - k/e_j) - (k + 1) \right)$, then there exists a positive constant c such that
\[|Z| \sum_{j=1}^{q} \omega(j)(1-k/e_j) - (k+1) - (2k^2+2k-1)2q/N \prod_{p=0}^{k-1} \prod_{j=1}^{q} |A_p \vee A_j|^{4/N} |A_k|^{1+2q+N} \prod_{j=1}^{q} |(Z, A_j)^{\omega(j)(1-k/e_j)}| \leq c \left(\frac{2R}{(R^2 - |z|^2)} \right)^{k(k+1)/2 + \sum_{p=0}^{k-1} (k-p)^2 2q/N}. \]

Proof. Using the above Schwarz lemma for Γ, we obtain
\[h(z) \leq c_0 \left(\frac{2R}{(R^2 - |z|^2)} \right)^2. \]

So by (3.5) we have
\[|Z| \sum_{j=1}^{q} \omega(j)(1-k/e_j) - (k+1) - (2k^2+2k-1)2q/N \prod_{p=0}^{k-1} \prod_{j=1}^{q} |A_p \vee A_j|^{4/N} |A_k|^{1+2q+N} \prod_{j=1}^{q} |(Z, A_j)^{\omega(j)(1-k/e_j)}| \leq c_0 \left(\frac{2R}{R^2 - |z|^2} \right)^{1/\beta_k}. \]

Set $K := \sup_{0 < x \leq 1} x^{2/N} (N - \log x)$. Since $\varphi_p(H_j) < 1$ for all p and j we have
\[\frac{1}{(N - \log \varphi_p(H_j))} \geq \frac{1}{K} \varphi_p(H_j)^{2/N} = \frac{1}{K} \frac{|A_p \vee A_j|^{4/N}}{|A_p|^{4/N}}. \]

Substituting these into (3.7), we obtain the desired conclusion.

4. Proof of Theorem 1

The proof of Theorem 1 basically follows the argument in [13] using the main lemma (see also the arguments in [6, 7 and 8]). We include our proof here for the convenience of the reader.

We may assume M is simply connected, otherwise we consider its universal covering. By Koebe’s uniformization theorem, M is biholomorphic to C or to the unit disc. For the case $M = C$, Nochka (see [10], also see [16]) proved
that if a k-nondegenerate holomorphic map from C to CP^{n-1} is ramified over hyperplanes H_j ($1 \leq j \leq q$) with multiplicity at least e_j, where H_j are in general position, then

$$\sum_{j=1}^{q} \left(1 - \frac{k}{e_j}\right) \leq 2(n - 1) - k + 1;$$

in this case our Theorem 1 is true. For our purpose it suffices to consider the case $M = \Delta$.

We first prove the first part of Theorem 1.

Assume the first part of Theorem 1 is not true, namely G is ramified over hyperplanes H_1, \ldots, H_q in CP^{n-1} in general position with multiplicity e_j and

$$\sum_{j=1}^{q} (1 - k/e_j) > (k + 1)(n - k/2 - 1) + n.$$

Let $\omega(j)$ be Nochka weights of $\{H_j\}$. Because G is k-nondegenerate, we may assume $G(\Delta) \subset CP^k$, so that $G = [g_0 : \cdots : g_k]: \Delta \to CP^k$ is nondegenerate. We consider hyperplanes $H_j \cap CP^k$, obviously these hyperplanes are in $(n - 1)$-subgeneral position in CP^k. For the convenience, we still denote these hyperplanes by $\{H_j\}$.

Let $\tilde{G} = (g_0, \ldots, g_k): \Delta \to CP^{k+1} - \{0\}$; then the metric ds^2 on M induced from the standard metric on R^n is given by

$$ds^2 = 2|\tilde{G}|^2|dz|^2.$$

By Lemma 2.2,

$$q - 2(n - 1) + k - 1 = \theta \left(\sum_{j=1}^{q} \omega(j) - k - 1\right), \quad 0 < \omega(j) \theta \leq 1,$$

and

$$\theta \leq \frac{2(n - 1) - k + 1}{k + 1} = \frac{2n - k - 1}{k + 1},$$

so

$$2 \left(\sum_{j=1}^{q} \omega(j) \left(1 - \frac{k}{e_j}\right) - k - 1\right) = \frac{2\theta \left(\sum_{j=1}^{q} \omega(j) - k - 1\right)}{\theta} - 2 \sum_{j=1}^{q} \frac{k \omega(j) \theta}{\theta e_j}$$

$$= \frac{2(q - 2n + k + 1)}{\theta} - 2 \sum_{j=1}^{q} \frac{k \omega(j) \theta}{\theta e_j}$$

$$\geq \frac{2(q - 2n + k + 1)}{\theta} - 2 \sum_{j=1}^{q} \frac{k}{\theta e_j}$$

$$= \frac{2 \left(\sum_{j=1}^{q} (1 - k/e_j) - 2n + k + 1\right)}{\theta}$$

$$\geq \frac{2 \left(\sum_{j=1}^{q} (1 - k/e_j) - 2n + k + 1\right) (k + 1)}{(2n - k - 1)}$$

$$> k(k + 1) \quad (by \ (4.1)).$$
Consider numbers

\[
\rho = \frac{k(k+1)/2 + \sum_{p=0}^{k-1} (k-p)^2 2q/N}{\sum_{j=1}^{q} \omega(j)(1-k/e_j) - (k+1) - (k^2 + 2k - 1)2q/N},
\]

(4.3)

\[
\gamma = \frac{k(k+1)/2 + qk(k+1)/N + 2q/N \sum_{p=0}^{k-1} p(p+1)}{\sum_{j=1}^{q} \omega(j)(1-k/e_j) - (k+1) - (k^2 + 2k - 1)2q/N},
\]

(4.4)

\[
\delta = \frac{1}{(1-\gamma) \left(\sum_{j=1}^{q} \omega(j)(1-k/e_j) - (k+1) - (k^2 + 2k - 1)2q/N \right)}.
\]

(4.5)

Choose some \(N \) with

\[
\sum_{j=1}^{q} \omega(j)(1-k/e_j) - (k+1) - k(k+1)/2 > 2q/N > \frac{k^2 + 2k - 1 + \sum_{p=0}^{k} (k-p)^2}{1/q + (k^2 + 2k - 1) + k(k+1)/2 + \sum_{p=0}^{k-1} p(p+1)}
\]

so that

\[
0 < \rho < 1, \quad 2\delta/N > 1.
\]

(4.6)

Consider the open subset

\[
M' = M - \left(\{ \tilde{G}_k = 0 \} \cup \bigcup_{1 \leq j \leq q, \; 0 \leq p \leq k-1} \{ \tilde{G}_p \lor A_j = 0 \} \right)
\]

of \(M \) and define the function

\[
v = \left(\frac{\prod_{j=1}^{q} \lvert (G, A_j)^{[\omega(j)(1-k/e_j)]} \rvert}{\prod_{p=0}^{k-1} \prod_{j=1}^{q} \lvert \tilde{G}_p \lor A_j \rvert^{4/N} \lvert \tilde{G}_k \rvert^{1+2q/N}} \right)^\delta
\]

on \(M' \), where \(\tilde{G}_p = \tilde{G}^{(0)} \land \cdots \land \tilde{G}^{(p)} \). By Lemma 3.1, \(\nu(z) \) is strictly positive and continuous on \(M' \).

Let \(\pi: \tilde{M}' \to M' \) be the universal covering of \(M' \). Since \(\log v \circ \pi \) is harmonic on \(\tilde{M}' \) by the assumption, we can take a holomorphic function \(\beta \) on \(\tilde{M}' \) such that \(\lvert \beta \rvert = \nu \circ \pi \). Without loss of generality, we may assume that \(M' \) contains the origin 0 of \(C \). As in Fujimoto’s paper [6, 7, 8], for each point \(\tilde{p} \) of \(\tilde{M}' \) we take a continuous curve \(\gamma_{\tilde{p}}: [0, 1] \to M' \) with \(\gamma_{\tilde{p}}(0) = 0 \) and \(\gamma_{\tilde{p}}(1) = \pi(\tilde{p}) \), which corresponds to the homotopy class of \(\tilde{p} \). Let \(\tilde{0} \) denote the point corresponding to the constant curve 0. Set

\[
w = F(\tilde{p}) = \int_{\gamma_{\tilde{p}}} \beta(z) \, dz.
\]

Then \(F \) is a single-valued holomorphic function on \(M' \) satisfying the condition \(F(\tilde{0}) = 0 \) and \(dF(\tilde{p}) \neq 0 \) for every \(\tilde{p} \in \tilde{M}' \). Choose the largest \(R \) (\(\leq \infty \)) such that \(F \) maps an open neighborhood \(U \) of \(\tilde{0} \) biholomorphically onto an open disc \(\Delta_R \) in \(C \), and consider the map \(B = \pi \circ (F|U)^{-1}: \Delta_R \to M' \). By the Liouville theorem, \(R = \infty \) is impossible.
By the definition of $w = F(z)$ we have

\[(4.7) \quad |dw/dz| = v(z).\]

For each point $a \in \partial \Delta$ consider the curve

$$L_a : w = ta, \quad 0 \leq t < 1,$$

and the image Γ_a of L_a by B. We shall show that there exists a point a_0 in $\partial \Delta_R$ such that Γ_{a_0} tends to the boundary of M. To this end, we assume the contrary. Then, for each $a \in \partial \Delta_R$, there is a sequence \(\{t_\nu : \nu = 1, 2, \ldots\} \) such that $\lim_{\nu \to \infty} t_\nu = 1$ and $z_0 = \lim_{\nu \to \infty} B(t_\nu a)$ exist in M. Suppose that $z_0 \notin M'$. Let $\delta_0 = 4\delta/N > 1$. Then by Lemma 3.1, we have

$$\liminf_{z \to z_0} |\tilde{G}_k|^{\delta_0} \prod_{1 \leq j \leq q, \ 1 \leq p \leq k-1} |\tilde{G}_p \lor A_j|^{2\delta_0} \cdot v > 0.$$

If $\tilde{G}_k(z_0) = 0$ or $|\tilde{G}_p \lor A_j|(z_0) = 0$ for some p and j, we can find a positive constant c such that $v \geq c/|z - z_0|^{\delta_0}$ in a neighborhood of z_0, so that we obtain

$$R = \int_{L_a} |dw| = \int_{L_a} \left|\frac{dw}{dz}\right| dz = \int v(z) |dz| \geq c \int_\Gamma \frac{1}{|z - z_0|^{\delta_0}} |dz| = \infty.$$

This is a contradiction. Therefore, we have $z_0 \in M'$.

Take a simply connected neighborhood V of z_0 which is relatively compact in M'. Set $C' = \min_{z \in V} v(z) > 0$. Then $B(ta) \in V$ ($t_0 < t < 1$) for some t_0. In fact, if not, Γ_a goes and returns infinitely often from ∂V to a sufficiently small neighborhood of z_0 and so we get the absurd conclusion

$$R = \int_{L_a} |dw| \geq C' \int_{\Gamma_a} |dz| = \infty.$$

By the same argument, we can easily see that $\lim_{t \to 1} B(ta) = z_0$. Since π maps each connected component of $\pi^{-1}(V)$ biholomorphically onto V, there exists the limit

$$\tilde{p}_0 = \lim_{t \to 1} (F|U)^{-1}(ta) \in \tilde{M}'.$$

Thus $(F|U)^{-1}$ has a biholomorphic extension to a neighborhood of a. Since a is arbitrarily chosen, F maps an open neighborhood of \tilde{U} biholomorphically onto an open neighborhood of $\tilde{\Delta}_R$. This contradicts the property of R. In conclusion, there exists a point $a_0 \in \partial \Delta_R$ such that Γ_{a_0} tends to the boundary of M.

Our goal is to show that Γ_{a_0} has finite length, contradicting the completeness of the given minimal surface M.

By (4.7) we obtain $|dw/dz| = v(z)$. So

\[(4.8) \quad \left|\frac{dw}{dz}\right| = |v(z)|^{1-\gamma} \left|\frac{dw}{dz}\right|^{\gamma} = \left(\frac{\prod_{j=1}^{q} |(\tilde{G}_j, A_j)|^{\omega(j)(1-k/j)}}{\prod_{p=0}^{k-1} \prod_{j=1}^{q} |\tilde{G}_p \lor A_j|^{4/N} |\tilde{G}_k|^{1+2q/N}}\right)^{1/\left(\sum \omega(j)(1-k/j) -(k+1) -(k^2+2k-1)2q/N\right)} \left|\frac{dw}{dz}\right|^{\gamma}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let \(Z(w) = \tilde{G} \circ B(w) \), \(Z_0(w) = g_0 \circ B(w) \), \ldots , \(Z_k(w) = g_k \circ B(w) \). Then because

\[
Z \land Z' \land \cdots \land Z^{(p)} = (\tilde{G} \land \cdots \land \tilde{G}^{(p)}) \left(\frac{dz}{dw} \right)^{p+1/2},
\]

it is easy to see that

\[
\left(\frac{d}{dw} \right)^{1/2} \left(\sum_{j=1}^{k+1} \omega_j \right) = (\tilde{G} \land \cdots \land \tilde{G}^{(p)}) \left(\frac{dz}{dw} \right)^{p+1/2},
\]

where \(\Lambda_p = Z^{(0)} \land \cdots \land Z^{(p)} \).

On the other hand, the metric on \(\Delta_R \) induced from \(ds^2 = 2|\tilde{G}|^2 |dz|^2 \) through \(B \) is given by

\[
B^*ds^2 = 2|\tilde{G}(B(w))|^2 \left| \frac{dz}{dw} \right|^2 |dw|^2.
\]

Combining (4.7) and (4.8) gives

\[
B^*ds = 2|Z| \left(\frac{\Pi^{k-1}_{p=0} |\Lambda_p \land A_j|^{4/n} |\Lambda_k|^{1+2q/N}}{\Pi^{q}_{j=1} |(Z, A_j)|^{\omega(j)(1-k/e_j)}} \right)^{1/2} \left| \sum_{j=1}^{k+1} \omega(j)(1-k/e_j)-(k+1)-(k+2k-1)2q/N \right| |dw|.
\]

Using the main lemma, we have

\[
B^*ds \leq c \left(\frac{2R}{R^2 - |w|^2} \right)^\rho |dw|,
\]

where \(c \) is a positive constant. Since \(\rho < 1 \), it then follows that

\[
d(0) \leq \int_{\Gamma_{00}} B^*ds = \int_{L_{00}} B^*ds \leq c \int_{0}^R \left(\frac{2R}{R^2 - |w|^2} \right)^\rho |dw| < \infty,
\]

where \(d(0) \) denotes the distance from the origin 0 to the boundary of \(M \). This contradicts the assumption of completeness of \(M \). Hence the proof of the first part of Theorem 1 is complete.

We now prove the second part.

For any complete minimal surface \(M \) immersed in \(R^n \), if there are \(q > n(n + 1)/2 \) hyperplanes in general position in \(CP^{n-1} \) such that its Gauss map \(G \) is ramified over \(H_j \) with multiplicity at least \(\varepsilon_j \) for each \(j \) and

\[
\sum_{j=1}^{q} (1 - n/e_j) > n(n + 1)/2,
\]

we are going to prove that \(M \) is flat. Since \(M \) is flat if and only if its Gauss map is a constant map (see [12]), we only need to prove that \(G \) is a constant map.

If \(G \) is not a constant map, then we may assume that \(G \) is \(k \)-nondegenerate and \(1 \leq k \leq n-1 \). By the first part of the theorem, we have

\[
\sum_{j=1}^{q} (1 - k/e_j) \leq (k+1)(n-k/2-1) + n.
\]

Since

\[
(k+1)(n-k/2-1) + n \leq n(n+1)/2,
\]
and
\[\sum_{j=1}^{q} \left(1 - \frac{n-1}{e_j} \right) \leq \sum_{j=1}^{q} \left(1 - \frac{k}{e_j} \right), \]
we obtain
\[\sum_{j=1}^{q} \left(1 - \frac{n-1}{e_j} \right) \leq n(n+1)/2. \]
This contradicts the assumption. Therefore \(M \) is flat. Q.E.D.

5. Proof of Theorem 2

Let \(x = (x_1, x_2, x_3) : M \to \mathbb{R}^3 \) be a nonflat minimal surface and \(g : M \to CP^1 \) the Gauss map. Assume \(M = \Delta \) (as the argument above). Set \(\varphi_i = \frac{\partial x_i}{\partial z} \) \((i = 1, 2, 3) \) and \(f = \varphi_1 - \sqrt{-1} \varphi_2 \). Then according to [12] or [7], the metric on \(M \) induced from \(\mathbb{R}^3 \) is given by
\[ds^2 = |f|^2 (1 + |g|^2)^2 |dz|^2. \]
Take a reduced representation \(\tilde{g} = (g_0, g_1) \) of \(g \) on \(M \). Then we can rewrite
\[ds^2 = |h|^2 |	ilde{g}|^4 |dz|^2, \]
where \(h = f/g_0^2 \), and moreover \(h \neq 0 \). The rest of the steps are the same as the proof of Theorem 1. If \(M \) is not flat, then \(g \) is not a constant map. Assume that \(g \) is ramified over \(a_j \) with multiplicity of \(e_j \) and \(\sum_{j=1}^{q} (1 - 1/e_j) > 4 \), we shall derive a contradiction. Let \(P(a_j) = a_j, \alpha_j \in C^2 \). Consider numbers
\[\rho = \gamma = \frac{1 + 2q/N}{\sum_{j=1}^{q} (1 - 1/e_j) - 2 - 2q/N}, \]
\[\delta = \frac{1}{(1 - \rho) \left(\sum_{j=1}^{q} (1 - 1/e_j) - 2 - 2q/N \right)}. \]
Choose some \(N \) with
\[\frac{\sum_{j=1}^{q} (1 - 1/e_j) - 3}{3} > 2q/N > \frac{\sum_{j=1}^{q} (1 - 1/e_j) - 3}{3 + 1/q} \]
so that \(0 < 2\rho < 1, \frac{2\delta}{N} > 1 \). Consider the open subset \(M' = M - \{ \tilde{g}_1 = 0 \} \) of \(M \) and define the function
\[v = h^{1/(1-\gamma)} \left(\prod_{j=1}^{q} |(\tilde{g}, \alpha_j)|^{(1-1/e_j-4/N)} \right)^{\delta} \]
on \(M' \) where \(\tilde{g}_1 = \tilde{g} \wedge \tilde{g}' \).
By exactly the same argument as in the proof of Theorem 1, we can find a curve \(\Gamma_{a_0} \) tends to the boundary of \(M \), and we can estimate the pull-back metric, eventually we obtain that \(\Gamma_{a_0} \) has finite length, contradicting the completeness of the given minimal surface \(M \). Q.E.D.
REFERENCES

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE 0511, REPUBLIC OF SINGAPORE

Current address: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

E-mail address: minru@math.harvard.edu