Gauss map of minimal surfaces with ramification
HTML articles powered by AMS MathViewer
- by Min Ru
- Trans. Amer. Math. Soc. 339 (1993), 751-764
- DOI: https://doi.org/10.1090/S0002-9947-1993-1191614-3
- PDF | Request permission
Abstract:
We prove that for any complete minimal surface $M$ immersed in ${R^n}$, if in $C{P^{n - 1}}$ there are $q > n(n + 1)/2$ hyperplanes ${H_j}$ in general position such that the Gauss map of $M$ is ramified over ${H_j}$ with multiplicity at least ${e_j}$ for each $j$ and \[ \sum \limits _{j = 1}^q {\left ({1 - \frac {{(n - 1)}} {{{e_j}}}} \right ) > n(n + 1)/2} \] , then $M$ must be flat.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-DΓΌsseldorf-Johannesburg, 1973. MR 0357743
- Wan Xi Chen, Defect relations for degenerate meromorphic maps, Trans. Amer. Math. Soc. 319 (1990), no.Β 2, 499β515. MR 1010882, DOI 10.1090/S0002-9947-1990-1010882-9
- Shiing-shen Chern and Robert Osserman, Complete minimal surfaces in euclidean $n$-space, J. Analyse Math. 19 (1967), 15β34. MR 226514, DOI 10.1007/BF02788707 M. J. Cowen, The Kobayashi metric on ${P^n} - ({2^n} + 1)$ hyperplanes, Value Distribution Theory, Marcel Dekker, New York, 1974, pp. 205-223.
- Michael Cowen and Phillip Griffiths, Holomorphic curves and metrics of negative curvature, J. Analyse Math. 29 (1976), 93β153. MR 508156, DOI 10.1007/BF02789977
- Hirotaka Fujimoto, On the Gauss map of a complete minimal surface in $\textbf {R}^{m}$, J. Math. Soc. Japan 35 (1983), no.Β 2, 279β288. MR 692327, DOI 10.2969/jmsj/03520279
- Hirotaka Fujimoto, On the number of exceptional values of the Gauss maps of minimal surfaces, J. Math. Soc. Japan 40 (1988), no.Β 2, 235β247. MR 930599, DOI 10.2969/jmsj/04020235
- Hirotaka Fujimoto, Modified defect relations for the Gauss map of minimal surfaces. II, J. Differential Geom. 31 (1990), no.Β 2, 365β385. MR 1037406
- Xiaokang Mo and Robert Osserman, On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimotoβs theorem, J. Differential Geom. 31 (1990), no.Β 2, 343β355. MR 1037404
- E. I. NoΔka, Uniqueness theorems for rational functions on algebraic varieties, Bul. Akad. Ε tiince RSS Moldoven. 3 (1979), 27β31, 93 (Russian). MR 567787 β, On the theory of meromorphic functions, Soviet Math. Dokl. 27 (1983), no. 2.
- Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
- Min Ru, On the Gauss map of minimal surfaces immersed in $\textbf {R}^n$, J. Differential Geom. 34 (1991), no.Β 2, 411β423. MR 1131437
- Min Ru, On the Gauss map of minimal surfaces with finite total curvature, Bull. Austral. Math. Soc. 44 (1991), no.Β 2, 225β232. MR 1126360, DOI 10.1017/S0004972700029658
- Min Ru and Pit-Mann Wong, Integral points of $\textbf {P}^n-\{2n+1\;\textrm {hyperplanes\;in\;general\;position}\}$, Invent. Math. 106 (1991), no.Β 1, 195β216. MR 1123379, DOI 10.1007/BF01243910
- Fumio Sakai, Degeneracy of holomorphic maps with ramification, Invent. Math. 26 (1974), 213β229. MR 355118, DOI 10.1007/BF01418950
- B. V. Shabat, Distribution of values of holomorphic mappings, Translations of Mathematical Monographs, vol. 61, American Mathematical Society, Providence, RI, 1985. Translated from the Russian by J. R. King; Translation edited by Lev J. Leifman. MR 807367, DOI 10.1090/mmono/061 P. M. Wong, Defect relations for maps on parabolic spaces and Kobayashi metric on projective spaces omitting hyperplanes, Thesis, Univ. of Notre Dame, 1976.
- Frederico Xavier, The Gauss map of a complete nonflat minimal surface cannot omit $7$ points of the sphere, Ann. of Math. (2) 113 (1981), no.Β 1, 211β214. MR 604048, DOI 10.2307/1971139
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 751-764
- MSC: Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9947-1993-1191614-3
- MathSciNet review: 1191614